Twenty-four years of AVHRR-derived sea surface temperature (SST) data and 35 years of NOCS (V.2) in situ-based SST data were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air-sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year -1 for the whole basin, about 0.026°C year -1 for the western sub-basin and about 0.042°C year -1 for the eastern sub-basin over 1985-2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux interannual variations indicates a negative correlation, with the long-term SST increase, driving a net air-sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellitederived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.
Abstract. The Mediterranean Forecasting system Pilot Project has concluded its activities in 2001, achieving the following goals: Realization of the first high-frequency (twice a month)Voluntary Observing Ship (VOS) system for the Mediterranean Sea with XBT profiles for the upper thermocline (0-700 m) and 12 n.m. along track nominal resolution;2. Realization of the first Mediterranean Multidisciplinary Moored Array (M3A) system for the Near-Real-Time (NRT) acquisition of physical and biochemical observations. The actual observations consists of: air-sea interaction parameters, upper thermocline (0-500 m) temperature, salinity, oxygen and currents, euphotic zone (0-100 m) chlorophyll, nutrients, Photosinthetically Available Radiation (PAR) and turbidity;3. Analysis and NRT dissemination of high quality along track Sea Level Anomaly (SLA), Sea Surface Temperature (SST) data from satellite sensors to be assimilated into the forecasting model;4. Assembly and implementation of a multivariate Reduced Order Optimal Interpolation scheme (ROOI) for assimilation in NRT of all available data, in particular, SLA and VOS-XBT profiles;5. Demonstration of the practical feasibility of NRT ten day forecasts at the Mediterranean basin scale with resolution of 0.125 • in latitude and longitude. The analysis or nowcast is done once a week;6. Development and implementation of nested regional (5 km) and shelf (2-3 km) models to simulate the seasonal variability. Four regional and nine shelf modelsCorrespondence to: N. Pinardi (n.pinardi@ambra.unibo.it)were implemented successfully, nested within the forecasting model. The implementation exercise was carried out in different region/shelf dynamical regimes and it was demonstrated that one-way nesting is practical and accurate;7. Validation and calibration of a complex ecosystem model in data reach shelf areas, to prepare for forecasting in a future phase. The same ecosystem model is capable of reproducing the major features of the primary producers' carbon cycle in different regions and shelf areas. The model simulations were compared with the multidisciplinary M3A buoy observations and assimilation techniques were developed for the biochemical data.This paper overviews the methodological aspects of the research done, from the NRT observing system to the forecasting/modelling components and to the extensive validation/calibration experiments carried out with regional/shelf and ecosystem models.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.