In a fermentation process, dissolved oxygen is the one of the key process variables that needs to be controlled because of the effect they have on the product quality. In a penicillin production, dissolved oxygen concentration influenced biomass concentration. In this paper, multilayer perceptron neural network (MLP) and Radial Basis Function (RBF) neural network is used in modeling penicillin fermentation process. Process data from an industrial scale fed-batch bioreactor is used in developing the models with dissolved oxygen and penicillin concentration as the outputs. RBF neural network model gives better accuracy than MLP neural network. The model is further used in fuzzy logic controller design to simulate control of dissolved oxygen by manipulation of aeration rate. Simulation result shows that the fuzzy logic controller can control the dissolved oxygen based on the given profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.