Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
Dissociative recombination of the polyatomic ions D3O+ and H3O+ with electrons have been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). Absolute cross sections have been determined from 0.001 eV to 0.25 eV center-of-mass energy for D3O+ and from 0.001 eV to 28 eV for H3O+. The cross sections are large (7.3×10−13 cm2 for D3O+ and 3.3×10−12 cm2 for H3O+ at 0.001 eV). At low energies, the cross sections for D3O+ are E−1 energy dependent whereas it is slightly steeper for H3O+. A similar E−1 energy dependence was also observed by Mul et al. [J. Phys. B 16, 3099 (1983)] with a merged electron-ion beam technique for both H3O+ and D3O+ and by Vejby-Christensen et al. [Astrophys. J. 483, 531 (1997)] with the ASTRID storage ring in Denmark, who presented relative cross sections for H3O+. A resonance has been observed around 11 eV for H3O+. It reflects an electron capture to Rydberg states converging to an excited ionic core. A similar structure was reported by Vejby-Christensen et al. Our absolute measurements are in fairly good agreement with those from Mul et al., which were first divided by 2 (Mitchell, 1999, private communication) and from Heppner et al. [Phys. Rev. A 13, 1000 (1976)] for H3O+. Thermal rates were deduced from the measured cross sections for electron temperatures ranging from 50 K to 30 000 K. At 300 K, the thermal rate is equal to 7.6×10−7 cm3 s−1 for H3O+ and to 3.5×10−7 cm3 s−1 for D3O+. Complete branching ratios for all the possible product channels have been determined from 0 eV to 0.005 eV center-of-mass energy for D3O+ and at 0 eV for H3O+, using a well-characterized transmission grid in front of an energy-sensitive surface-barrier detector. No isotope effect was observed within the experimental uncertainties. The three-body break-up channel OX+X+X (where X stands for H or D) is found to occur for 67%–70% of the dissociations. Water or heavy water is produced with an 18%–17% probability and the production of oxygen atoms is negligible. These results support the three-body break-up dominance already found by Vejby-Christensen et al. for the DR of H3O+ in a similar heavy-ion storage ring experiment. However, even if the general trend is the same for both storage rings, significant differences have been observed and will be discussed.
The absolute dissociative recombination and absolute dissociative excitation rate coefficients and cross sections have been determined for N2+ and electrons for collision energies between 10 meV and 30 eV. The ion storage ring CRYRING has been used in combination with an imaging technique with a position-and-time-sensitive detector. Information is retrieved on the ion beam vibrational state populations and on the product branching in the dissociative recombination process at 0 eV collisions. A hollow cathode ion source has been used to lower the vibrational excitation in the ion beam; a more traditional hot-cathode ion source was used as well. The most important findings are the following. The rate coefficient for an N2+ ion beam (46%, v=0, 27% v=1) versus electron temperature (K) is α(Te)=1.75(±0.09)×10−7(Te/300)−0.30 cm3 s−1. The dissociative recombination rate is found to be weakly dependent on the N2+ vibrational level. At 0 eV collision energy, the v=0 product branching is found to be 0.37(8):0.11(6):0.52(4) for N(4S)+N(2D):N(2P)+N(4S):N(2D)+N(2D) fragments. The dissociative recombination cross section does not have a high-energy peak as was found in a number of lighter molecular systems. The dissociative excitation signal starts only slightly above the energy threshold for dissociation, and peaks near 25 eV. From the dissociative excitation data and literature data, information is retrieved on the dissociative ionization of N2+. The comparison of these results with earlier DR measurements is extensively discussed.
We present experimental data on the dissociative recombination ͑DR͒ and the dissociative excitation ͑DE͒ of O 2 ϩ in its electronic and vibrational ground state using a heavy ion storage ring. The absolute DR cross section has been determined over an electron collision energy range from 1 meV to 3 eV. The thermal DR rate coefficient is derived; ␣(T e )ϭ2.4ϫ10 Ϫ7 (300/T e ) 0.70Ϯ0.01 cm 3 s Ϫ1 , for TϾ200 K. The threshold for DE was observed near its energetic threshold of 6.7 eV. The DE cross section curve has a maximum of 3ϫ10 Ϫ16 cm 2 near 15 eV. We have determined the branching fractions to the different dissociation limits and present atomic quantum yields for the DR process between 0 to 300 meV collision energy. The quantum yield of O( 1 D) is found to be 1.17Ϯ0.05, largely independent of the electron energy. Arguments are presented that the branching fraction to O( 3 P)ϩO( 1 S) is negligible. The branching fraction to the O( 1 S)ϩO( 1 D) is smaller than 0.06 and varies strongly as a function of collision energy. The O( 1 S) quantum yield is a strong function of electron temperature. Hence, the relative strength of the green, O( 1 S), and the red, O( 1 D), airglows may be used as a measure of the electron temperature of the upper atmosphere. A qualitative explanation is given of the consequences of nonadiabatic interactions in the dissociation step of the DR process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.