It is routinely stated in the literature that Excitatory Amino Acid Transporter 5 (EAAT5) is a retina-specific glutamate transporter. EAAT5 is expressed by retinal photoreceptors and bipolar cells, where it serves as a slow transporter and as an inhibitory glutamate receptor, the latter role is due to the gating of a large chloride conductance. The dogma of an exclusively retinal distribution has arisen because Northern blot analyses have previously shown only modest hybridisation in non-retinal tissues. Others have re-interpreted this as indicating that EAAT5 was only present in retinal tissues. However, this view appears to be erroneous; recent evidence demonstrating abundant expression of EAAT5 in rat testis prompted us to re-examine this dogma. A new antibody was developed to an intracellular loop region of rat EAAT5. This new tool, in concert with RT-PCR and sequencing, demonstrated that EAAT5 is widely distributed at the mRNA and protein levels in many non-nervous tissues including liver, kidney, intestine, heart, lung, and skeletal muscle. We conclude that EAAT5 is a widely distributed protein. Whether it functions in all locations as a glutamate transporter, or mainly as a glutamate-gated chloride conductance, remains to be determined.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. have performed immunocytochemistry to demonstrate expression in photoreceptors in human retina. We noted that in retinas afflicted by dry aged-related macular degeneration (AMD), there was a loss of hEAAT5v from the lesioned area and from photoreceptors adjacent to the lesion. We conclude that hEAAT5v protein expression may be perturbed in peri-lesional areas of AMD-afflicted retinas that do not otherwise exhibit evidence of damage. The loss of hEAAT5v could, therefore, represent an early pathological change in the development of AMD and might be involved in its aetiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.