Massive multiple-input multiple-output (MIMO) wireless communications refers to the idea equipping cellular base stations (BSs) with a very large number of antennas, and has been shown to potentially allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple (linear) processing. In this paper, we present a comprehensive overview of state-of-the-art research on the topic, which has recently attracted considerable attention. We begin with an information theoretic analysis to illustrate the conjectured advantages of massive MIMO, and then we address implementation issues related to channel estimation, detection and precoding schemes. We particularly focus on the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells. We also analyze the energy efficiency achieved by massive MIMO systems, and demonstrate how the degrees of freedom provided by massive MIMO systems enable efficient single-carrier transmission. Finally, the challenges and opportunities associated with implementing massive MIMO in future wireless communications systems are discussed.
Abstract-This paper studies a multi-antenna wiretap channel with a passive eavesdropper and an external helper, where only quantized channel information regarding the legitimate receiver is available at the transmitter and helper due to finite-rate feedback. Given a fixed total bandwidth for the two feedback channels, the receiver must determine how to allocate its feedback bits to the transmitter and helper. Assuming zero-forcing transmission at the helper and random vector quantization of the channels, an analytic expression for the achievable ergodic secrecy rate due to the resulting quantization errors is derived. While direct optimization of the secrecy rate is difficult, an approximate upper bound for the mean loss in secrecy rate is derived and a feedback bit allocation method that minimizes the average upper bound on the secrecy rate loss is studied. A closed-form solution is shown to be possible if the integer constraint on the bit allocation is relaxed. Numerical simulations indicate the significant advantage that can be achieved by adaptively allocating the available feedback bits.Index Terms-Cooperative jamming, feedback bits allocation, limited feedback, MISO wiretap channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.