Olatuyi, S. O. and Leskiw, L. A. 2014. Long-term changes in soil salinity as influenced by subsoil thickness in a reclaimed coal mine in east-central Alberta. Can. J. Soil Sci. 94: 605–620. Elevated salinity and sodicity are major challenges to reclamation of surface-mined coal sites in the Alberta Plains region. Research plots were established in 1981 at the Battle River Coal Mine near Forestburg, AB, to determine an optimum depth of subsoil replacement over sodic mine spoil required to sustain agricultural capability. Subsoil thickness was varied at 0, 25, 65, 135, 165 and 335 cm, overlain with 15 cm topsoil. The plots were monitored annually from 1982 to 1986 and were seeded to forage from 1987. Plots were resampled in 2013 to examine long-term changes in soil quality by comparing the results with the historical means for the 1980s. Key soil parameters measured are pH, electrical conductivity (EC), total dissolved salts (TDS), sodium adsorption ratio (SAR) and soluble Na. The soil quality of the root zone (0–40 cm) improved over time in all treatments as EC, TDS, SAR and concentration of Na decreased significantly between the 1980s and 2013. Amounts of EC and soluble Na consistently increased with depth, suggesting salt accumulation was predominantly by downward leaching, but with contribution by upward migration of Na from the underlying spoil. Relative to the native soils in 2013, the root zone quality ratings for EC and SAR in the topsoil/spoil treatment were better than in the shallow-bedrock Solonetzic soil. Ratings for the 25-cm subsoil treatment were also comparable with the local Chernozemic soil, but better than the fine till Solonetzic soil. This study demonstrates that a minimum of 25 cm subsoil and 15 cm topsoil are required for mitigating salinity and sodicity in these reconstructed soils. The resampling in 2013 demonstrates that long-term monitoring is essential to obtain a better understanding of reclamation outcomes.
Olatuyi, S. O. and Leskiw, L. A. 2015. Evaluation of soil reclamation techniques at the Key Lake uranium mine. Can. J. Soil Sci. 95: 153–176. Adequate soil nutrients and water supply are critical to vegetation establishment and creation of sustainable ecosystems in post-disturbed mining sites. This study investigated effects of various amendments and capping techniques on soil quality and moisture distribution on a reclaimed waste rock pile at the Key Lake uranium mine in northern Saskatchewan, Canada. Soil profiles were reconstructed in 2010 using locally available sandy glacial materials to create soil covers of 1 m thickness. The reclamation treatments consisted of a Control plot, commercial peat (Peat), a local lake sediment (Sediment), underlying flax straw (Straw), mulched forest floor and Ae (LFH), fertilizer (NPK), manure pellets (Pellets), and a demonstration plot (Demo) comprised of Sediment, LFH and Pellets. Soil amendments were applied by various techniques as broadcast, surface incorporation, below the surface or surface mounding. Annual plot monitoring was conducted from 2011 to 2013 and soil samples were analyzed for pH, electrical conductivity (EC), sodium adsorption ratio (SAR), available nutrients, cation exchange capacity (CEC), total organic carbon (TOC), total nitrogen (TN), and regulated metals. Volumetric moisture contents were measured periodically to examine soil moisture response to growing-season precipitation. In 2013, the topsoil of the Control plot was slightly acidic (pH of 6.3) while the Sediment and Demo plots had the lowest pH of 4.0. The EC and SAR values were below 1.0 in all treatment plots. The highest levels of available N, TN, TOC and CEC were in the Sediment and Demo plots, followed by the Peat. The concentration of arsenic exceeded the regulatory limit by 3.4- and 2.6-fold in the Sediment and Demo topsoil, respectively, while concentrations of other metals were below the limits in all treatment plots. The Sediment and Demo treatments were most effective in retaining water in the topsoil, while application of soil amendment by mounding enhanced infiltration and water transmission in the profile. In terms of soil fertility and moisture storage, the combination of organic amendments in multi-layers plus surface mounding, as in the Demo plot, is the most promising capping technique for restoring soil health, vegetative cover and ecosystem functions on the waste rock pile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.