Succinate dehydrogenase (SDH) is known as an ideal target for the investigations of fungicides. To develop novel SDH inhibitors, 30 novel thiophene/furan-1,3,4-oxadiazole carboxamide derivatives were designed and synthesized. In the in vitro antifungal assay, a majority of the target compounds demonstrated fair to potent antifungal activity against seven tested phytopathogenic fungi. Compounds 4b, 4g, 4h, 4i, and 5j showed remarkable antifungal activity against Sclerotinia sclerotiorum, affording EC50 values ranging from 0.1∼1.1 mg/L. In particular, compound 4i displayed the most potent activity against S. sclerotiorum (EC 50 = 0.140 ± 0.034 mg/L), which was superior to that of boscalid (EC 50 = 0.645 ± 0.023 mg/L). A further morphological investigation revealed the abnormal mycelia and damaged cell structures of compound 4i-treated S. sclerotiorum by scanning electron microscopy. Furthermore, the in vivo antifungal assay against S. sclerotiorum revealed that compounds 4g and 4i were effective for suppressing rape Sclerotinia rot at a dosage of 200 mg/L. In the SDH inhibition assay, compounds 4g and 4i also presented significant inhibitory activity with IC 50 values of 1.01 ± 0.21 and 4.53 ± 0.19 μM, respectively, which were superior or equivalent to that of boscalid (3.51 ± 2.02 μM). Molecular docking and molecular dynamics simulation of compound 4g with SDH revealed that compound 4g could form strong interactions with the key residues of the SDH. These results indicated that this class of derivatives could be a promising scaffold for the discovery and development of novel SDH inhibitors.
In this article, a series of novel quinoline derivatives of ursolic acid (UA) bearing hydrazide, oxadiazole, or thiadiazole moieties were designed, synthesised, and screened for their in vitro antiproliferative activities against three cancer cell lines (MDA-MB-231, HeLa, and SMMC-7721). A number of compounds showed significant activity against at least one cell line. Among them, compound 4d exhibited the most potent activity against three cancer cell lines with IC 50 values of 0.12 ± 0.01, 0.08 ± 0.01, and 0.34 ± 0.03 lM, respectively. In particular, compound 4d could induce the apoptosis of HeLa cells, arrest cell cycle at the G0/G1 phase, elevate intracellular reactive oxygen species level, and decrease mitochondrial membrane potential. In addition, compound 4d could significantly inhibit MEK1 kinase activity and impede Ras/Raf/ MEK/ERK transduction pathway. Therefore, compound 4d may be a potential anticancer agent and a promising lead worthy of further investigation.
In this study, a series of new indole derivatives of ursolic acid bearing different N-(aminoalkyl)carboxamide side chains were designed, synthesized, and evaluated for their in vitro cytotoxic activities against two human hepatocarcinoma cell lines (SMMC-7721 and HepG2) and normal hepatocyte cell line (LO2) via MTT assay. Among them, compound 5f exhibited the most potent activity against SMMC-7721 and HepG2 cells with IC50 values of 0.56 ± 0.08 μM and 0.91 ± 0.13 μM, respectively, and substantially lower cytotoxicity to LO2 cells. A follow-up enzyme inhibition assay and molecular docking study indicated that compound 5f can significantly inhibit the activity of Topoisomerase IIα. Further mechanistic studies performed in SMMC-7721 cells revealed that compound 5f can elevate the intracellular ROS levels, decrease mitochondrial membrane potential, and finally lead to the apoptosis of SMMC-7721 cells. Collectively, compound 5f is a promising Topoisomerase II (Topo II) inhibitor, which exhibited the potential as a lead compound for the discovery of novel anticancer agents.
In this paper, a series of novel 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid bearing different N-(piperazin-1-yl)alkyl side chains were designed, synthesised and evaluated for their in vitro anticancer activities against three human hepatocarcinoma cell lines (SMMC-7721, HepG2 and Hep3B). Among them, compound 10g exhibited the most potent activity against three cancer cell lines with IC 50 values of 1.39 ± 0.13, 0.51 ± 0.09 and 0.73 ± 0.08 mM, respectively. In the kinase inhibition assay, compound 10g could significantly inhibit MEK1 kinase activity with IC 50 of 0.11 ± 0.02 mM, which was confirmed by western blot analysis and molecular docking study. In addition, compound 10g could elevate the intracellular ROS levels, decrease mitochondrial membrane potential, destroy the cell membrane integrity, and finally lead to the oncosis and apoptosis of HepG2 cells. Therefore, compound 10g could be a potent MEK inhibitor and a promising anticancer agent worthy of further investigations.
With the expectation of finding new and effective antitumor drugs, a series of novel N-(1H-benzo[d]imidazole-2-yl)-benzamide/benzenesulfonamide derivatives of dehydroabietic acid were synthesized and evaluated for cytotoxic activity against three human cancer cell lines (MCF-7, HeLa, and HepG2 cells) and one human normal hepatocyte cell line (LO2). As a result, a number of derivatives showed moderate to good antitumor activities. Among them, compound 8h exhibited the most potent activities against three cancer cell lines with IC 50 values of 0.87 ± 0.18, 9.39 ± 0.72, and 8.31 ± 0.64 μM, respectively, and was less active to normal hepatocyte LO2 cells. Further mechanism studies revealed that compound 8h could arrest the cell cycle of MCF-7 cells at S phase and induce the apoptosis of MCF-7 cells in ROS-mediated mitochondrial pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.