We report a characterization of the multi-band flux variability and correlations of the nearby (z=0.031) blazar Markarian 421 (Mrk 421) using data from Metsähovi, Swift, Fermi-LAT, MAGIC, FACT and other collaborations and instruments from November 2014 till June 2016. Mrk 421 did not show any prominent flaring activity, but exhibited periods of historically low activity above 1 TeV (F>1TeV < 1.7× 10−12 ph cm−2 s−1) and in the 2-10 keV (X-ray) band (F2 − 10 keV < 3.6 × 10−11 erg cm−2 s−1), during which the Swift-BAT data suggests an additional spectral component beyond the regular synchrotron emission.The highest flux variability occurs in X-rays and very-high-energy (E>0.1 TeV) γ-rays, which, despite the low activity, show a significant positive correlation with no time lag. The HRkeV and HRTeV show the harder-when-brighter trend observed in many blazars, but the trend flattens at the highest fluxes, which suggests a change in the processes dominating the blazar variability. Enlarging our data set with data from years 2007 to 2014, we measured a positive correlation between the optical and the GeV emission over a range of about 60 days centered at time lag zero, and a positive correlation between the optical/GeV and the radio emission over a range of about 60 days centered at a time lag of $43^{+9}_{-6}$ days.This observation is consistent with the radio-bright zone being located about 0.2 parsec downstream from the optical/GeV emission regions of the jet. The flux distributions are better described with a LogNormal function in most of the energy bands probed, indicating that the variability in Mrk 421 is likely produced by a multiplicative process.
We report the results of our follow-up campaign for the neutron-star—black-hole (NSBH) merger GW200115 detected during the O3 run of the Advanced LIGO and Advanced Virgo detectors. We obtained wide-field observations with the Deca-Degree Optical Transient Imager covering ∼20% of the total probability area down to a limiting magnitude of w = 20.5 AB at ∼23 hr after the merger. Our search for counterparts returns a single candidate (AT2020aeo), likely not associated with the merger. In total, only 25 sources of interest were identified by the community and later discarded as unrelated to the GW event. We compare our upper limits with the emission predicted by state-of-the-art kilonova simulations and disfavor high-mass ejecta (>0.1 M ⊙), indicating that the spin of the system is not particularly high. By combining our optical limits with gamma-ray constraints from Swift and Fermi, we disfavor the presence of a standard short-duration burst for viewing angles ≲15° from the jet axis. Our conclusions are, however, limited by the large localization region of this GW event, and accurate prompt positions remain crucial to improving the efficiency of follow-up efforts.
Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations. Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsähovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components. Results. The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3σ. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from γ′min=2×104 to γ′max=6×105.
The AMEGO Teamhttps://asd.gsfc.nasa.gov/amego/ The All-Sky Medium Energy Gamma-ray Observatory (AMEGO) will survey the entire sky every 3 hours with its wide field of view and excellent continuum sensitivity between 200 keV and 10 GeV, discovering new sources and automatically providing follow-up observation for multiwavelength and multi-messenger transient sources. Many of these sources have the energy spectral peaks in the AMEGO band, and/or spectral behavior that is not well understood at these energies. AMEGO will discover new gamma-ray bursts, magnetar flares, active galaxy flares, novae, and monitor the long-term light curves of variable sources including Galactic binaries. Thanks to its wide FoV and survey strategy, AMEGO is also well placed to search for electromagnetic counterparts to gravitational wave and neutrino sources.
On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/ 90% error regions of 13/72 deg 2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray followup observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, <´q 1.4 10 4 , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 10 51 erg (assuming typical GRB parameters). Unified Astronomy Thesaurus concepts: Gravitational waves (678); High energy astrophysics (739); Black holes (162); X-ray astronomy (1810); Gamma-ray astronomy (628); Gamma-ray bursts (629); Near ultraviolet astronomy (1094)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.