In this paper, we introduce a novel way to represent the interface for two-phase flows with phase change. We combine a level-set method with a Cartesian embedded boundary method and take advantage of both. This is part of an effort to obtain a numerical strategy relying on Cartesian grids allowing the simulation of complex boundaries with possible change of topology while retaining a high-order representation of the gradients on the interface and the capability of properly applying boundary conditions on the interface. This leads to a two-fluid conservative second-order numerical method. The ability of the method to correctly solve Stefan problems, onset dendrite growth with and without anisotropy is demonstrated through a variety of test cases. Finally, we take advantage of the two-fluid representation to model a Rayleigh-Bénard instability with a melting boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.