Hyperkalemic emergency (HE) refers to life-threatening hyperkalemia consisting of a high serum potassium level with severe complications (e.g., dysrhythmias, cardiac arrest, or myopathy. [1] Hyperkalemic emergencies (HEs) are commonly encountered (2%-3%) in the emergency department (ED). [2,3] In-hospital mortality rate for hospitalized hyperkalemic patients is about 14.1% and 4.5 times higher than that of those with normal potassium. [4] Quick recognition and treatment are critical for decreasing morbidity and mortality. [5] Nevertheless, great variety and sparse evidence lie in current HE treatment. In this article, we will review the current medical literature on the treatment of HEs and propose a treatment fl owchart for HEs (Figure 1).
Inflammatory injury is a hallmark of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). However, the mechanisms underlying inflammatory injury remain obscure. Here, we developed the novel strategy to suppress lung inflammation through maintaining microvascular endothelial barrier integrity. VE-cadherin is the main adherens junction protein that interacts with β-catenin and forms a complex. We found that lung inflammation was accompanied by decreased VE-cadherin expression and increased β-catenin activity in animal models and human pulmonary microvascular endothelial cells (HPMECs), illuminating the relationship among VE-cadherin/β-catenin complex, microvascular endothelial barrier integrity, and inflammation. Furthermore, we showed that the VE-cadherin/β-catenin complex dissociated upon lung inflammation, while Sirt3 promoted the stability of such a complex. Sirt3 was decreased during lung inflammation in vivo and in vitro. Sirt3 deficiency not only led to the downregulation of VE-cadherin but also enhanced the transcriptional activity of β-catenin that further increased β-catenin target gene MMP-7 expression, thereby promoting inflammatory factor COX-2 expression. Sirt3 overexpression promoted VE-cadherin expression, inhibited β-catenin transcriptional activity, strengthened the stability of the VE-cadherin/β-catenin complex, and suppressed inflammation in HPMECs. Notably, Sirt3 deficiency significantly damaged microvascular endothelial barrier integrity and intensified lung inflammation in animal model. These results demonstrated the role of Sirt3 in modulating microvascular endothelial barrier integrity to inhibit inflammation. Therefore, strategies that aim at enhancing the stability of endothelial VE-cadherin/β-catenin complex are potentially beneficial for preventing sepsis-induced lung inflammation.
Background: The incidence and mortality of sepsis are increasing year by year, and there is still a lack of specific biomarkers to predict its prognosis. Prognostic value of vascular endothelial growth factor (VEGF) in predicting the severity and mortality of sepsis has been gradually discovered.Methods: Literature was searched through Embase, PubMed, Web of Science, China National Knowledge Infrastructure(CNKI) and Cochrane Library databases in March 2022. Observational studies, evaluating the impact of VEGF in sepsis outcomes (mortality and severity) are included in this meta-analysis. Risk of bias was assessed with the Newcastle-Ottawa Scale (NOS). Sensitivity and publication bias analyses were also assessed. Meta-regression analysis were performed to identify the potential sources of heterogeneity.Result: A total of 1,574 articles were retrieved from the systematic literature search. We included 20 studies for qualitative and quantitative analysis. Deceased and critically ill patients had higher baseline VEGF levels than survivors and non-severe patients. The pooled sensitivity and specificity for VEGF predicts sepsis mortality were 0.79and 0.76, respectively. the area under the SROC curve was 0.83.Conclusion: High VEGF are associated with poor clinical outcomes for patients diagnosed with sepsis. This study was recorded on PROSPERO, under the registration ID: CRD42022323079.
BACKGROUND: Intestinal microcirculation dysfunction is an important factor that causes poor prognosis in sepsis patients and is an important pathophysiological basis for the occurrence and development of sepsis.DATA RESOURCES: PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) were searched from inception to August 1, 2021. The search was limited to the English language only. Two reviewers independently identified studies related to intestinal microcirculation dysfunction in sepsis. Exclusion criteria were duplicate articles according to multiple search criteria.RESULTS: Fifty articles were included, and most of them were animal studies. These studies reported pathogenesis, including endothelial dysfunction, leukocyte recruitment and adhesion, microthrombus formation, microcirculation hypoperfusion, and redistribution of intestinal wall blood flow. The monitoring methods of intestinal microcirculation were also diverse, including handheld microscopes, intravital microscopy (IVM), laser Doppler blood flow instruments, laser speckle contrast imaging, tissue refl ectance spectrophotometry, biochemical markers of intestinal ischemia, and histopathological examination. In view of the related pathogenesis of intestinal microcirculation disorder in sepsis, existing studies also have diff erent opinions on its treatment.CONCLUSIONS: Limited by monitoring, there are few clinical studies on intestinal microcirculation dysfunction in sepsis. Related research mainly focuses on basic research, but some progress has also been made. Therefore, this review may provide a reference for future research on intestinal microcirculation dysfunction in sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.