Long-bone growth by endochondral ossification is cooperatively accomplished by chondrocyte proliferation, hypertrophic differentiation, and appropriate secretion of collagens, glycoproteins, and proteoglycans into the extracellular matrix (ECM). Before folding and entering the secretory pathway, ECM macromolecules in general are subject to extensive posttranslational modification, orchestrated by chaperone complexes in the endoplasmic reticulum (ER). ERp57 is a member of the protein disulfide isomerase (PDI) family and facilitates correct folding of newly synthesized glycoproteins by rearrangement of native disulfide bonds. Here, we show that ERp57-dependent PDI activity is essential for postnatal skeletal growth, especially during the pubertal growth spurt characterized by intensive matrix deposition. Loss of ERp57 in growth plates of cartilage-specific ERp57 knockout mice (ERp57 KO) results in ER stress, unfolded protein response (UPR), reduced proliferation, and accelerated apoptotic cell death of chondrocytes. Together this results in a delay of long-bone growth with the following characteristics: (1) enlarged growth plates; (2) expanded hypertrophic zones; (3) retarded osteoclast recruitment; (4) delayed remodeling of the proteoglycan-rich matrix; and (5) reduced numbers of bone trabeculae. All the growth plate and bone abnormalities, however, become attenuated after the pubertal growth spurt, when protein synthesis is decelerated and, hence, ERp57 function is less essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.