Collaborative virtual environments (C-VE) facilitate team-oriented training on Virtual Reality-based surgical simulators. Many C-VEs replicate the VE on each user's machine to allow for real-time interactions. However, this solution does not work well when modifying voxel-based C-VEs because large and frequent volumetric updates make it difficult to synchronize the C-VE. This paper describes a hybrid depth-buffered image (DBI) and geometry-based rendering method created to simulate visual interactions between local virtual bone cutting tools and remotely maintained volumetric bone material for a craniotomy simulator. For real-time interactions, users only store a DBI of the volumetric C-VE and composite it with rendered images of surgical tools. Additionally, we describe methods to combat network bandwidth/latency to remotely simulate haptic and bone drilling interactions between users' tools and the volumetric VE. For haptic feedback, a multi-rate solution [9] allows users to construct a local approximation of the volumetric C-VE to compute new forces. Only 2D DBI updates are required to synchronize different users when the bone changes due to drilling. Our approach provides an improved performance over a replicated VE that uses 3D model-based updates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.