The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.
We have used a sol-gel technique to obtain optically transparent hydrogels in which water is confined within a 3D silica matrix. In this work we report X-ray scattering and dielectric spectroscopy measurements on samples having different aging times and compare them with previously obtained results with near-infrared (NIR) absorption spectroscopy. X-ray scattering at room temperature enables to characterize the structure and size of the matrix pores and the non-uniform distribution of water inside the hydrogel. Broad band dielectric spectroscopy in the temperature range 130-280 K enables to study water dynamics. In aged hydrogels two relaxations are clearly evident and show characteristic temperature dependence. The faster relaxation has an Arrhenius behavior in the whole temperature range investigated with an activation enthalpy of approximately 50 kJ/mol; it is attributed to water molecules strongly interacting with the silica matrix. The slower relaxation has a markedly non-Arrhenius behavior which can be fitted with a Vogel-Fulcher-Tamman (VFT) relation with critical temperature of approximately 100 K and activation enthalpies of 35 and 95 kJ/mol at 300 and 170 K respectively; it is attributed to water molecules within the pores that do not interact strongly with the matrix and behave collectively. The VFT temperature dependence of the dielectric relaxation time suggests that this water does not crystallize, in agreement with previous results from NIR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.