The infusion of 1-deamino-8-D-arginine vasopressin (DDAVP) in normal individuals is followed by an increase in factor VIII/von Willebrand factor (vWF) in plasma, by an increase in intensity of all sizes of multimers, and by the appearance of larger multimers of vWF than those seen in the resting state. Since the larger multimers are rapidly cleared and proteolysis is known to cause disaggregation of large multimers, we evaluated the degree of vWF proteolysis after DDAVP administration. DDAVP was infused into eight normal adult volunteers, and the relative proportions of the intact 225 kilodalton (kDa) subunit and the 189, 176, and 140 kDa vWF fragments were compared before and at different times after DDAVP infusion. The relative proportion of the 176 kDa fragment was increased, whereas that of the other species was decreased, thereby indicating that proteolytic fragmentation had occurred. However, plasmin did not appear to be responsible because the vWF fragments characteristically produced by this enzyme could not be detected. Concomitant analysis of vWF multimeric structure showed that these changes were accompanied by an increase in the relative proportion of the satellite bands, which suggests that they were proteolytically generated. Proteolysis may explain, at least in part, rapid clearance of larger vWF multimers released by DDAVP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.