a b s t r a c tIn this work, a new theory of thermoelasticity is derived using the methodology of fractional calculus. The theories of coupled thermoelasticity and of generalized thermoelasticity with one relaxation time follow as limit cases. A uniqueness theorem for this model is proved. A variational principle and a reciprocity theorem are derived.
In this work, we apply the fractional order theory of thermoelasticity to a 1D thermal shock problem for a half‐space. Laplace transform techniques are used. The predictions of the theory are discussed and compared with those for the coupled and generalized theories of thermoelasticity. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions.
In this work, we apply the fractional order theory of thermoelasticity to a 1D problem for a half-space overlaid by a thick layer of a different material. The upper surface of the layer is taken to be traction free and is subjected to a constant thermal shock. There are no body forces or heat sources affecting the medium. Laplace transform techniques are used to eliminate the time variable t. The solution in the transformed domain is obtained by using a direct approach. The inverse Laplace transforms are obtained by using a numerical method based on Fourier expansion techniques.The predictions of the fractional order theory are discussed and compared with those for the generalized theory of thermoelasticity. We also study the effect of the fractional derivative parameters of the two media on the behavior of the solution. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.