The pattern surface structure of a thin blend polymer film of Poly methyl methacrylate (PMMA) – Poly ethylene glycol (PEG) induced by Ar+ ion etching (5 keV) has been investigated by scanning electron microscopy. Blend polymer films have been obtained consisting of a hydrophilic PEG and a hydrophobic PMMA distributed in co-continuous phases. Four different compositions of the two polymers are dissolved in chloroform and irradiated with gamma rays (60Co) at 20 kGy to produce transparent films of blend polymer PMMA-PEG after casting. Self-assembled of PMMA-PEG film is obtained because of the high contrast between the two polymers. Ion-polymer interaction with a hydrophilic polymer (Ar+ +PEG) rather than the high etch resistance of hydrophobic polymer (Ar+ −PMMA) was observed. The results are discussed in terms of significant destruction of bonds in the blend polymer films as a result of which one polymer undergoes rapid dissociation rather than the other one. This means that etching with Ar+ ions of the PMMA domains are stable and PEG can be selective. The ATR-FTIR spectrum shows the absence of hydrogen bonds and XRD/DSC curves show the crystanility of PMMA depending on the PEG contents and gamma radiation effect, irradiated blend polymer PMMA/PEG has shown more resistant at thermal degradation than irradiated PMMA. This indicates that the PEG contents have an effect on the thermal stability of PMMA/PEG as detected by TGA. Finally, the pattern surface of irradiated blend polymer (PMMA-2%PEG) was plated with two coaxial layers subsequently of copper (Cu) and silver (Ag) using sputter technique.
Polymer nanocomposites composed of zinc oxide nanoparticles (ZnO NPs)-doped polyvinyl alcohol (PVA) polymer matrix have been synthesized using solvent casting preparation method. The ZnO/PVA polymer nanocomposite films are irradiated with different argon ion beam fluences using broad-beam ion source. The prepared films are characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–visible spectroscopy. The XRD shows that ZnO NPs are successfully formed on PVA polymer and the mean size of ZnO NPs is 31.2[Formula: see text]nm. The FTIR peaks indicate that ZnO NPs are attached to the polymer chains, whereas the SEM analysis shows that ZnO NPs are homogeneously dispersed into the PVA polymer surface. The optical bandgap, band tail width and number of carbon atoms in cluster are obtained and discussed using UV–visible spectroscopy. The transmittance is shown with low transmittance intensity in the UV region with the addition of ZnO NPs and ion beam irradiation. The optical bandgap [Formula: see text] showed significant decrease from 5.25[Formula: see text]eV for pristine PVA to 3.10[Formula: see text]eV by adding ZnO and from 3.10[Formula: see text]eV for un-irradiated ZnO/PVA to 2.98[Formula: see text]eV after being irradiated by [Formula: see text][Formula: see text]cm[Formula: see text]. The number of carbon atoms in cluster [Formula: see text] is increased by ZnO addition, whereas the Urbach energy [Formula: see text] is decreased. These results confirmed that there are significant modifications in PVA polymer, and the produced flexible ZnO/PVA is a good polymer nanocomposite film for technological applications.
In this work, PVA/Ag nanocomposites films were prepared using solution casting technique, these films were irradiated with Argon ion beam to modify the structure. The main objective of the study is to enhance the optical and electrical properties of the polymer nanocomposites films by irradiation. The conventional characterization techniques such as UV–Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM) and dielectric measurement are employed to understand the structure–property relations. FTIR analysis of these composite films shows chemical changes and a significant impact on them can be observed after irradiation. After doping, the XRD data shows silver nanoparticles formation in the PVA polymer. The band gap energy of samples is decreased with increases in the concentration of silver nanoparticles and ion beam fluence, which gives clear indication that ion beam irradiation induced defects are formed in the composite systems. The electrical conductivity, dielectric loss [Formula: see text] and dielectric constant [Formula: see text] are increased with increasing ion beam fluence and Ag dopant concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.