In the present investigation a realistic two‐phase model accounting for the change in the total number of moles accompanying the reaction is utilized to explore a novel reactor configuration suggested for the methane steam reforming process. The suggested design is basically a fluidized bed reactor equipped with a bundle of membrane tubes. These tubes remove the main product, hydrogen, from the reacting gas mixture and drive the reaction beyond its thermodynamic equilibrium. The proposed novel design is also equipped with sodium heat pipes which act as a thermal flux transformer to provide the large amount of heat needed by the endothermic reaction through a relatively small heat transfer surface, assuring better reactor compactness. Two options for fluid routing through the membrane tubes are proposed; each is suitable for a certain industrial application. The performance of this novel configuration is compared with that of an industrial fixed bed steam reformer and the comparison shows the potential advantages of the suggested configuration.
Steam reforming of light hydrocarbons is a key step for producing hydrogen and syngas for important processes in the petroleum and petrochemical industries. Since the establishment of the SMR process in 1930, research and development have led to improved catalyst performance and improved reactor tube materials. Since about 1970, new reactor configurations have been considered. The authors critically review recent attempts to radically improve the SMR reactor performance, analyze the areas of improvement and the suitability of proposed configurations for different reforming applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.