One of the most fundamental concepts in fuzzy set theory is the extension principle. It gives a generic way of dealing with fuzzy quantities by extending non-fuzzy mathematical concepts. There are a few examples, including the concept of fuzzy distance between fuzzy sets. The extension approach is then methodically applied to real algebra, with considerable development of fuzzy number operations. These operations are computationally appealing and generalized interval analysis. Although the set of real fuzzy numbers with extended addition or multiplication is no longer a group, it retains many structural qualities. The extension concept is demonstrated to be particularly beneficial for defining set-theoretic operations for higher fuzzy sets. We need some definitions related to our properties before we can create the properties of integration of a crisp real-valued function over a fuzzy interval. It is our goal in this article to develop and demonstrate certain characteristics of a real-valued function over a fuzzy interval in order to broaden the scope of the notion of integration of a real-valued function over a fuzzy interval. Some of these characteristics are linked to the operations of extended addition and extended subtraction, while others are not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.