In relation to the use of retrofit materials on damaged constructions, application on earthquake-resistant buildings, and for the strengthening and rehabilitation on weakened regions, there is a need for a more superior material than concrete. Application sites include beam-column joints, corbels, link-slabs, deep beams, support regions and dapped-end areas. Fiber reinforced engineered cementitious composites (FR-ECC) can address this issue, because FR-ECC is one of the composite materials that has high strength, ductility and durability. In order to develop FR-ECC, this study was done to investigate the effect of adding quartz powder on the compressive strength capacity and properties of FR-ECC through the use of polyvinyl alcohol (PVA) and steel fibers. The volume fraction of fiber was set to 0%–2%. To support the friendly environment, FR-ECC uses by-product materials such as fly ash and silica fume, with a cement content less than 600 kg/m3. In terms of the experimental investigation on FR-ECC, this work conducted the fresh property tests showing that PVA fibers have quite an influence on ECC workability, due to their hydrophilic behavior. By adjusting the superplasticizer (SP) content, the consistency and high workability of the ECC mixes have been achieved and maintained. The test results indicated that the PVA and steel fibers-based ECC mixes can be classified as self-compacting composites and high early compressive strength composites. Significantly, addition of quartz powder into the ECC mixes increased the compressive strength ratio of the ECC samples up to 1.0747. Furthermore, the steel fiber-based ECC samples exhibited greater compressive strength than the PVA fibers-based ECC samples with the strength ratio of 1.1760. Due to effect of the pozzolanic reaction, the fibers dispersion and orientation in the fresh ECC mixes, so that the cementitious matrices provided the high strength on the FR-ECC samples. During the compression loading, the bulging effect always occurred before the failures of the fibers-based ECC samples. No spalling occurred at the time of rupture and the collapse occurred slowly. Thus, FR-ECC has provided unique characteristics, which will reduce the high cost of maintenance.
In this paper the wave induced hydrodynamic forces and the corresponding hydrodynamic coefficients for a 42 mm diameter model pipe subjected to regular waves was investigated experimentally and the results were compared with the responses of a similar rigid cylinder fitted with marine growth. The main objective of this study was to quantify the effects of marine growth on the hydrodynamic forces experimentally and determine the associated hydrodynamic coefficients. The experimental data were generated from a set of wave tank model tests and the results were scaled up using a scale factor of 1:55. The thickness of marine growth applied on the model pipe was varied with respect to the water depth in the ratio of 3:2:1. Regular waves were generated with wave heights ranging from 0.02 m to 0. 2 m for modal period varying from 0.6 s to 3.25 s. The tests were conducted for Keulegan-Carpenter number ranging from 3.9 to 23.3. The findings of the experimental results revealed that increasing the thickness of the full scale prototype cylinder by 110 mm due to marine growth fittings, has increased the overall wave hydrodynamic forces by 16 to 90% depending on the wave heights and the wave frequencies at which the model was tested, proving that the drag coefficients have considerably increased.
Sloshing has many industry applications, namely in offshore engineering, aerospace, ship building, and manufacturing. Sloshing simulation is essential to better understand the sloshing pattern and consequently to improve the tank design to reduce noise levels, stresses on the structure, and optimize the baffle configurations and arrangements. Thus, the aim of this study is to determine the effects of perforated (porous) and imperforate (solid) baffles on the sloshing pressure using ANSYS FLUENT software based on Volume of Fluid (VOF) method where a rectangular tank with 25% and 60% filling ratios was considered. In the first case, an unbaffled rectangular tank with 60% filling ratio was used for the validation purpose, while in the second case, a 25% filling ratio was investigated considering two scenarios, namely a unbaffled tank and a baffled tank case with perforated and imperforate baffles. The outcomes of the results indicate that perforated baffle can significantly reduce the sloshing pressure in the tank. The validation of the results also shows a good agreement with the published experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.