Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments.
Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES-ES and r-protein-ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.modeling | molecular dynamics | flexible fitting I n all living cells, the translation of mRNA into polypeptide occurs on ribosomes. Ribosomes provide a platform upon which aminoacyl-tRNAs interact with the mRNA as well as position the aminoacyl-tRNAs for peptide-bond formation (1). Ribosomes are composed of two subunits, a small subunit that monitors the mRNA-tRNA codon-anticodon duplex to ensure fidelity of decoding (2, 3) and a large subunit that contains the active site where peptide-bond formation occurs (4). Both the small and large subunits are composed of RNA and protein: In eubacteria such as Escherichia coli, the small subunit contains one 16S rRNA and 21 ribosomal proteins (r proteins), whereas the large subunit contains 5S and 23S rRNAs and 33 r proteins. Crystal structures of the complete bacterial 70S ribosome were initially reported at 5.5 Å (5), with an interpretation based on atomic models of the individual subunit structures (6-8), and are now available at atomic resolution (9). These structures have provided unparalleled insight into the mechanism of different steps of translation (1) as well as inhibition by antibiotics (10).Compared to the bacterial ribosome, the eukaryotic counterpart is more complicated, containing expansion segments (ES) and variable regions in the rRNA as well as many additional r proteins and r-protein extensions. Plant and fungal 80S ribosomes contain ∼5;500 nucleotides (nts) of rRNA and ∼80 r proteins, whereas bacterial 70S ribosomes comprise ∼4;500 nts and 54 r proteins. The additional elements present in eukaryotic ribosomes may reflect the increased complexity of translation regulation in eukaryotic cells, as evident for assembly, translation initiation, and development, as well as the phenomenon of localized translation (11-15).Early models for eukaryotic ribosomes were derived from electron micrographs of negative-stain or freeze-dried ribosomal particles (16) and localization of r proteins was attempted using immuno-EM and cross-linking approaches; see, for example, refs. 17-20. The first cryo-EM reconstruction of a eukaryotic 80S ribosome was reported for wheat germ (Triticum aestivum) at 38 Å (21). Initial core models for the yeast 80S ribosome were built at 15-Å resolution (22) by docking the rRNA s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.