Abstract:The main objective of this work is to address the adsorption of Silica nanoparticles (NPs) dispersed in different brines on chalk surfaces and their effect on fluid/rock interaction. Isothermal static and dynamic adsorption on chalk are addressed here. Isothermal static adsorption showed increased adsorption of NPs at higher salinity. The tests were performed to cover wide range of injection scenarios with synthetic seawater (SSW) and low salinity water (LSW). The selected LSW composition here is based on 1:10 diluted SSW, which has shown to have superior performance compared to other ion compositions. The dynamic adsorption tests of NPs showed reduction of calcite dissolution of about 30% compared to LSW alone. That is, silica nanofluid hinders calcite dissolution i.e., has less effect on chalk matrix integrity which is a major concern in chalk reservoir, if low salinity is employed for enhanced oil recovery. Both scanning electron microscope images and pressure drop across the core during nanofluid injection indicated no throat blockage. Based on ion tracking and the monitored pH, the mechanism(s) for NP adsorption/desorption are suggested. The results from this study suggests a synergy wherein adding relatively small amount of silica NPs can improve the performance of low salinity floods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.