Iron reduction and oxidation, as well as the microbial community involved in these processes, were investigated in a small pond that is continuously fed by slightly acidic, hypoxic, iron rich ground water. The seep area is located in a beech forest in central Jutland (Denmark), and beech litter is the dominant source of organic matter, carbon and energy for the microbial community. The pond is 30 to 50 cm deep with a water column depth ranging from 15 to 20 cm. Oxygen could only be detected down to 7 cm depth of the water column. Fe(II) concentrations increased with depth from about 30 µM close to the surface to ca. 100 µM at the bottom. The presence of Gallionella-and Sideroxidans-related strains was supported by clone library data, while Leptothrix-related 16S rDNA clones were not found. Samples amended with leaves, acetate, lactate and ethanol all showed stimulated iron reduction at the in situ temperature (about 10 • C). In particular, dried beech leaves stimulated iron reduction without a lag phase while acetate was only degraded after a 22 day lag period at the in situ pH. The long lag phase is most probably due to the low pH that is responsible for high acetic acid concentrations (0.8-1.2 mM ) at the start of the incubation. Light microscopy observations confirm the clone library data that Gallionella spp and other iron oxidizer related 16S rDNA sequences were relatively common. In addition, 16S rDNA sequences relatively similar to sequences of members of the iron reducer family Geobacteraceae were found. A clone library constructed with a primer set targeting specifically Geobacter-related strains revealed that strains most closely related to Geobacter thiogenes were predominant (19 out of 20 clones). By a combination of microscopy, cultivation and molecular investigations we have been able to provide several lines of evidence for a tight coupling of biological iron reduction and oxidation in this iron-rich fresh water seep.
Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment, and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.