Complex permittivities of in vitro diseased and undiseased human female breast tissues have been measured at 3.2 GHz using a resonant cavity technique. Ranges of dielectric properties and water contents of these tissues are presented. Experimental data are compared with models predicted from mixture equations. Measured permittivity data lie within limits set by two-phase mixture theory, but some conductivity data are in excess of those expected for a mixture of saline and protein. At any particular microwave frequency in all tissue of a given type, the relationship between permittivity and conductivity may be parametrized using the Debye relaxation equations. For each breast tissue type a characteristic relaxation frequency was calculated and found to be lower than that of physiological saline at the same temperature. It is concluded that the dielectric relaxation of tissue water is not the only dispersive process occurring at this frequency: dielectric relaxation of bound water and the tail end of a beta-dispersion may also contribute to the dielectric properties. The similarity of the dielectric properties of benign and malignant breast tumours measured in this work suggest that in vivo dielectric imaging methods will not be capable of distinguishing them.
A resonant cavity perturbation technique has been developed which provides a quick, simple and accurate method of measuring the microwave dielectric properties of small, easily prepared samples of tissues, tissue-simulating materials and biological fluids. The method gives dielectric properties averaged over the sample volume. The measurement accuracy with the apparatus used is +/- 2.2% for relative permittivity and +/- 3.5% for the loss factor for most tissue and biological material samples. With appropriate basic microwave equipment the method can be applied over the 1.5-6 GHz range of frequencies of interest for active and radiometric tissue microwave imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.