We present evidence that rat and mouse thymi contain mitochondrial uncoupling protein (UCP 1). Reverse transcriptase-PCR detected RNA transcripts for UCP 1 in whole thymus and in thymocytes. Furthermore, using antibodies to UCP 1 the protein was also detected in mitochondria isolated from whole thymus and thymocytes but not in thymus mitochondria from UCP 1 knock-out mice. Evidence for functional UCP 1 in thymus mitochondria was obtained by a comparative analysis with the kinetics of GDP binding in mitochondria from brown adipose tissue. Both tissues showed equivalent B max and K D values. In addition, a large component of the nonphosphorylating oxygen consumption by thymus mitochondria was inhibited by GDP and subsequently stimulated by addition of nanomolar concentrations of palmitate. UCP 1 was purified from thymus mitochondria by hydroxyapatite chromatography. The isolated protein was identified by peptide mass mapping and tandem mass spectrometry by using MALDI-TOF and LC-MS/MS, respectively. We conclude that the thymus contains a functioning UCP 1 that has the capacity to regulate metabolic flux and production of reactive oxygen-containing molecules in the thymus.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single approximately 33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 degrees C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 degrees C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.
Using an antibody specific and selective to mitochondrial uncoupling protein 1 (UCP1) peptide, this study confirms the observation that UCP 1 is present in thymocytes isolated from UCP 1 wild-type, but not UCP 1 knock-out mice. UCP 1 is also shown to be present in thymocytes isolated from rat. It was also demonstrated that an antibody raised to the full-length UCP 1 protein appears to be non-specific for UCP 1, as it detects protein in UCP 1 wild-type and UCP 1 knock-out mice, protein in mitochondria isolated from brown adipose tissue of both UCP 1 wild-type and UCP 1 knock-out mice, as well as detecting protein in mitochondria isolated from rat spleen, kidney, skeletal muscle and liver, tissues that do not express UCP 1. We were also able to show that CIDEA, a soluble protein with a suggested role in regulating UCP 1 function, is equally abundant in thymocytes from UCP 1 wild-type and UCP 1 knock-out mice. Taken together our data demonstrate that (a) UCP 1 is present in rat and mouse thymocytes, (b) that the antibody to full-length UCP 1 is not specific for UCP 1 and (c) that the absence of UCP 1 does not affect native expression of CIDEA in thymocytes.
Thymi were dissected from rats and connective tissue was removed. Mitochondria were purified from isolated thymocytes and immunoblot analysis was performed using an antibody specific for uncoupling protein 1, which detected a 32.5 kDa protein associated with mitochondria from the thymocytes. This implies that rat thymocytes contain uncoupling protein 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.