To be considered for further development, lead structures should display the following properties: (1) simple chemical features, amenable for chemistry optimization; (2) membership to an established SAR series; (3) favorable patent situation; and (4) good absorption, distribution, metabolism, and excretion (ADME) properties. There are two distinct categories of leads: those that lack any therapeutic use (i.e., "pure" leads), and those that are marketed drugs themselves but have been altered to yield novel drugs. We have previously analyzed the design of leadlike combinatorial libraries starting from 18 lead and drug pairs of structures (S. J. Teague et al. Angew. Chem., Int. Ed. Engl. 1999, 38, 3743-3748). Here, we report results based on an extended dataset of 96 lead-drug pairs, of which 62 are lead structures that are not marketed as drugs, and 75 are drugs that are not presumably used as leads. We examined the following properties: MW (molecular weight), CMR (the calculated molecular refractivity), RNG (the number of rings), RTB (the number of rotatable bonds), the number of hydrogen bond donors (HDO) and acceptors (HAC), the calculated logarithm of the n-octanol/water partition (CLogP), the calculated logarithm of the distribution coefficient at pH 7.4 (LogD(74)), the Daylight-fingerprint druglike score (DFPS), and the property and pharmacophore features score (PPFS). The following differences were observed between the medians of drugs and leads: DeltaMW = 69; DeltaCMR = 1.8; DeltaRNG = DeltaHAC =1; DeltaRTB = 2; DeltaCLogP = 0.43; DeltaLogD(74) = 0.97; DeltaHDO = 0; DeltaDFPS = 0.15; DeltaPPFS = 0.12. Lead structures exhibit, on the average, less molecular complexity (less MW, less number of rings and rotatable bonds), are less hydrophobic (lower CLogP and LogD(74)), and less druglike (lower druglike scores). These findings indicate that the process of optimizing a lead into a drug results in more complex structures. This information should be used in the design of novel combinatorial libraries that are aimed at lead discovery.
Abstract— A compilation of over 1500 Mg‐isotopic analyses of Al‐rich material from primitive solar system matter (meteorites) shows clearly that 26Al existed live in the early Solar System. Excesses of 26Mg observed in refractory inclusions are not the result of mixing of “fossil” interstellar 26Mg with normal solar system Mg. Some material was present that contained little or no 26Al, but it was a minor component of solar system matter in the region where CV3 and CO3 carbonaceous chondrites accreted and probably was a minor component in the accretion regions of CM chondrites as well. Data for other chondrite groups are too scanty to make similar statements. The implied long individual nebular histories of CAIs and the apparent gap of one or more million years between the start of CAI formation and the start of chondrule formation require the action of some nebular mechanism that prevented the CAIs from drifting into the Sun. Deciding whether 26Al was or was not the agent of heating that caused melting in the achondrite parent bodies hinges less on its widespread abundance in the nebula than it does on the timing of planetesimal accretion relative to the formation of the CAIs.
The optimization of low-potency leads into drugs is often accompanied by an increase in molecular weight (M(r)) and lipophilicity, as a consequence of affinity enhancement. Hits with affinity at µM levels discovered by screening leadlike libraries allow scope for this optimization process, as shown schematically by the distributions of M(r) for a leadlike library (1), oral drugs (2), and a typical combinatorial chemistry library (3). y=percentage with a particular molecular weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.