Composite sandwich materials are very common in structural uses for a wide range of applications in the aerospace and automotive industry that require low weight, high bending strength, and high energy absorption. In general, the core of the sandwich structures has a two-dimensional cellular structure, with a regular honeycomb geometry. While with standard manufacturing processes the geometric structures are limited, the emergence of additive manufacturing provides alternatives to conventional designs. The aim of this work is to analyze and evaluate the effect of the core geometry on the flexural properties of the structure. For that purpose, three different cellular configurations were considered, namely regular honeycombs, lotus, and hexagonal honeycombs with Plateau borders. Four relative densities, with average values of 0.1, 0.25, 0.44, and 0.62, for each configuration, were studied. The flexural properties of cellular structures were evaluated with three-point bending tests, both numerically and experimentally. A modeling approach of the tests in the three configurations was performed, for two materials, polylactic acid and pure aluminum, by means of finite element simulations. Fused deposition modeling was used to obtain polylactic acid samples for the aforementioned configurations, which were experimentally tested to evaluate the mechanical response and the failure behavior of the cores. Results differ with the geometry arrangement and showed a strong dependency with the relative density of the structures in the flexural response in what concerns strength, stiffness, and energy absorbed. The arrangements studied present properties, which make them competitive with the traditional core structures for the same density. A promising agreement between experimental and simulation results was obtained.
Sandwich structures are frequently used in automotive, aerospace and marine industries, as they provide adequate functional properties. The two-dimensional regular hexagonal cell shape, i.e. honeycomb is the most used core structure in sandwich panels. Recently, a new type of cellular structures composed of lattice struts has been proposed, as they combine high stiffness, strength and energy absorption with low weight. The main purpose of this research is to investigate the effect of the lattice topology on the flexural behaviour of sandwich panels. Five lattice geometries inspired in crystalline structures were designed, namely, body-centred parallelepiped, body-centred parallelepiped with struts in z-axis, body- and face-centred parallelepiped with struts in z-axis, face-centred parallelepiped with struts in z-axis and parallelepiped simple. The relative density of all the lattices was kept constant as 0.3. Both numerical and experimental approaches were used to evaluate the flexural properties and failure behaviour of the sandwich structures under three-point bending tests. The numerical analysis was undertaken with the finite element software NX Nastran. Taking advantage of additive manufacturing technologies, material extrusion was used to produce polylactic acid samples with the configurations aforementioned. The sandwich panels are composed by a single layer formed by the lattice core and two thin plates, at the bottom and top. The three parts of the panel were manufactured all together. The simulation results indicate that, among the lattices studied, topologies body-centred parallelepiped with struts in z-axis and body- and face-centred parallelepiped with struts in z-axis exhibit higher strength, while body- and face-centred parallelepiped with struts in z-axis shows higher stiffness and higher energy absorption, attaining values that do not differ much from the ones obtained with a two-dimensional hexagonal cellular structure, with the same relative density. As a consequence, some of the geometries studied may have the potential to be considered as alternatives to conventional structures in the design of sandwich structures.
We have studied the control and manipulation of tuneable equilibrium structures in a free-standing urethane/urea elastomer film by means of atomic force microscopy, small-angle light scattering and polarising optical microscopy. The urethane/urea elastomer was prepared by reacting a poly(propyleneoxide)-based triisocyanate-terminated prepolymer (PU) with poly(butadienediol) (PBDO), with a weight ratio of 60% PU/40% PBDO. An elastomer film was shear-cast onto a glass plate and allowed to cure, first in an oven, then in air. Latent micro- and nano-periodic patterns are induced by ultra-violet (UV) irradiation of the film and can be "developed" by applying a plane uniaxial stress or by immersing the elastomer in an appropriate solvent and then drying it. For this elastomer we describe six pattern states, how they are related and how they can be manipulated. The morphological features of the UV-exposed film surface can be tuned, reproducibly and reversibly, by switching the direction of the applied mechanical field. Elastomers extracted in toluene exhibit different surface patterns depending upon the state in which they were developed. Stress-strain data collected for the films before and after UV irradiation reveal anisotropy induced by the shear-casting conditions and enhanced by the mechanical field. We have interpreted our results by assuming the film to consist of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesised to be due to the more extensive cross-linking of chains located near the surface by the UV radiation. Patterns would thus arise as a competition between the effects of bending the skin and stretching/compressing the bulk, as in the work of Cerda and Mahadevan (Phys. Rev. Lett. 90, 074302 (2003)). We present some preliminary results of a simulation of this model using the Finite Element package ABAQUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.