Composite sandwich materials are very common in structural uses for a wide range of applications in the aerospace and automotive industry that require low weight, high bending strength, and high energy absorption. In general, the core of the sandwich structures has a two-dimensional cellular structure, with a regular honeycomb geometry. While with standard manufacturing processes the geometric structures are limited, the emergence of additive manufacturing provides alternatives to conventional designs. The aim of this work is to analyze and evaluate the effect of the core geometry on the flexural properties of the structure. For that purpose, three different cellular configurations were considered, namely regular honeycombs, lotus, and hexagonal honeycombs with Plateau borders. Four relative densities, with average values of 0.1, 0.25, 0.44, and 0.62, for each configuration, were studied. The flexural properties of cellular structures were evaluated with three-point bending tests, both numerically and experimentally. A modeling approach of the tests in the three configurations was performed, for two materials, polylactic acid and pure aluminum, by means of finite element simulations. Fused deposition modeling was used to obtain polylactic acid samples for the aforementioned configurations, which were experimentally tested to evaluate the mechanical response and the failure behavior of the cores. Results differ with the geometry arrangement and showed a strong dependency with the relative density of the structures in the flexural response in what concerns strength, stiffness, and energy absorbed. The arrangements studied present properties, which make them competitive with the traditional core structures for the same density. A promising agreement between experimental and simulation results was obtained.
The aim of this work is to evaluate the mechanical properties and failure analysis of cellular core structures with different geometries that were obtained by additive manufacturing. Sandwich panels are widely used in the aerospace and automotive industry. In general, the core of the panels is made of a two dimensional cellular with a honeycomb geometry. With the development of additive manufacturing methods it is possible to produce samples with complex geometries which may compete with conventional designs. Thus an investigation was conducted to evaluate the mechanical behavior of three core geometries, specifically, regular honeycombs, lotus and hexagonal honeycombs with Plateau borders. Samples were produced in PLA (polylactic acid) by fused deposition modelling (FDM). Experimental compressive loading in three different directions, and finite element simulations of the samples permit to evaluate their deformation and failure mechanisms.
Total hip replacement is a common practice in every day clinical work. Artificial hip implants consist of a femoral component and an acetabular component. Nowadays the acetabular component is composed of a polymeric cup and a metallic shell. This study focuses the development of an innovative acetabular component substituting the metallic shell by a multilayer coating on the acetabular cup. A titanium coating was deposited onto ultra-high molecular weight polyethylene (UHMWPE) samples by physical vapour deposition (PVD), having an in situ pretreatment with argon ion bombardment in order to optimize the adhesive strength by surface modification, followed by the deposition of a thin film of hydroxyapatite (HA) using rf magnetron sputtering technique, at room temperature. Results obtained seem to indicate that these multilayer coatings can be a viable alternative to the metallic shell, leading to the substitution of a two part for a one part acetabular component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.