This paper presents the ac impedance study and analysis of a proton exchange membrane (PEM) fuel cell operated under various loading conditions. Ballard’s 1.2 kW Nexa™ fuel cell used for this study is integrated with a control system. The PEM fuel cell stack was operated using room air and pure hydrogen (99.995%) as input. Impedance data were collected for the fuel cell to study the behavior of the stack and groups of cells under various loads. Single cell impedance analysis was also performed for individual cells placed at different locations in the stack. The ac impedance analysis, also known as electrochemical impedance analysis, showed low frequency inductive effects and mass transport losses due to liquid water accumulation at high current densities. Results show that the stack run time to achieve steady state for impedance measurements is important. Using impedance plots, the average Ohmic resistance for the whole stack was estimated to be 41 mΩ, the same value obtained when summing the resistance value of all individual cells. Impedance analysis for groups of cells at different locations in the stack shows changes in both polarization resistance and capacitive component only in the low frequency region. At high frequencies, single cell inductive and capacitive behavior varied as a function of location in the stack. The effects of artifacts on the high frequency loop and on the high and low frequency intercept loops are also discussed.
When data is stored, compressed, or communicated through a media such as cable or air, sources of noise and other parameters such as EMI, crosstalk, and distance can considerably affect the reliability of these data. Error detection and correction techniques are therefore required. Orthogonal Code is one of the codes that can detect errors and correct corrupted data. An n-bit orthogonal code has n/2 1s and n/2 0s. In a previous work these properties have been exploited to detect and correct errors. In this paper we present a new methodology to enhance error detection capabilities of the orthogonal code. The technique was implemented experimentally using Field Programmable Gate Arrays (FPGA). The results show that the proposed technique improves the detection capabilities of the orthogonal code by approximately 50%, resulting in 99.9% error detection, and corrects as predicted up to (n/4-1) bits of error in the received impaired code with bandwidth efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.