The purpose of these studies was to characterize the rates of fatty acid oxidation in reperfused myocardium and test the influence of excess fatty acids (FA) on mechanical function in the extracorporeally perfused, working swine heart model. Seventeen animals were prepared. Eight were untreated (LOW FA group; serum FA averaged 0.55 +/- 0.07 mumol/ml) and nine received a constant infusion of 10% Intralipid with heparin to raise serum FA to about 1.4 +/- 0.21 mumol/ml (HIGH FA group). Coronary flow in both groups was held at aerobic levels for an equilibrium period of 40 minutes, acutely reduced regionally in the anterior descending circulation by 60% for 45 minutes, and acutely restored to aerobic levels for 60-minute reflow. Appreciable mechanical depression (-47 delta% from aerobic values; p less than 0.01) during reperfusion was noted in both groups. This was associated with modest reductions in myocardial oxygen consumption (p less than 0.05) and losses of total tissue carnitine stores (p at least less than 0.02). Reperfused myocardium showed a strong preference for and aerobic use of FA during reflow such that 14CO2 production from labeled palmitate exceeded preischemic levels (+89 delta% in LOW FA hearts; +111 delta% in HIGH FA hearts). This suggested relative preservation of restoration of certain elements in mitochondrial function during reflow. The findings argue for uncoupling between substrate metabolism and energy production, accelerated but useless energy drainage, or some impairment between energy transfer and function of contractile proteins as possible explanations for the persistent depression of mechanical function (stunning) during reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)
An experimental animal model of hibernating myocardium is presented. Sixteen animals were initially prepared of which seven were selected for final review. Hearts were instrumented in two separate surgical procedures such that maximum phasic flow velocity in the left anterior descending (LAD) coronary artery was reduced by 50% and followed over 1 wk. Regional shortening declined at 1 wk to 62% of aerobic values (P less than 0.048) and did not improve over 2 h reperfusion. Metabolic determinations, obtained after 1 wk of coronary stenosis and immediately sampled before and after release of the LAD flow constrictor, showed no evidence of acidosis, hypercarbia, or an inability to extract oxygen at the tissue level. Thereafter, during the 2-h reperfusion period, hearts were able to respond to dobutamine (10 micrograms/kg infusion over 1 min) challenge with an appropriate shift in an end-systolic length estimate of contractility. Mitochondrial respiration at the conclusion of the studies in the reperfused bed demonstrated near normal recovery compared with aerobic values. None of the seven hearts showed gross evidence of infarction and only one heart was noted to have a few microfocal changes of healing infarction. Thus a new model of coronary stenosis is presented, which affected substantial reductions in mechanical function consistent with the concepts of hibernating myocardium. These mechanical events were not associated with marked metabolic abnormalities, reflecting advanced ischemia or mitochondrial dysfunction and could be transiently improved with inotropic stimuli. This model may prove beneficial as a tool in understanding mechanistic events underlying the hibernating heart.
Fatty acid metabolites (long-chain esters of CoA and carnitine) which collect in ischemic myocardium can form amphiphiles capable of disrupting subcellular performance. It is important to document the role of these amphiphiles in intact tissue. D-Octanoylcarnitine was chosen because of its previously described effects on inhibiting palmitoylcarnitine transferase (PCT-II) in in vitro and in vivo liver preparations. This inhibition will shift tissue levels of CoA and carnitine intermediates and thus alter amphiphile levels. The compound's actions in cardiac muscle are unknown. Dose response curves were developed in intact hearts to test the influence of D-octanoylcarnitine at pharmacological concentrations. Measurements were obtained in working, extracorporeally perfused, swine hearts. Drug was administered either systemically (IV) or via direct intracoronary (IC) infusions into the left anterior descending coronary circulation. Excess fatty acids were provided to ensure adequate fatty acid substrate for oxidation. Coronary flow was controlled at aerobic levels. Systemic administration of D-octanoylcarnitine (0.8-6.8 mM) resulted in transient peripheral hypotension which caused correlative decreases in 14CO2 production from labeled palmitate. Infusion of D-octanoylcarnitine (0.5-3.9 mM) IC did not cause appreciable hypotension and was not associated with suppression of fatty acid oxidation. No build-up of carnitine esters was noted in treated hearts but acyl CoA levels were reduced (p less than or equal to 0.002). This latter finding was modestly related to increasing dose schedule of the compound in the IC group. The lack of suppression in fatty acid oxidation argues against significant inhibition of PCT II and lessens the attractiveness of using D-octanoylcarnitine in intact myocardium to selectively block fatty acid utilization at this locus.
Coronary artery disease causes an increase in glutamate uptake and alanine output by the heart. We assessed the effects of acute myocardial ischemia on alanine and glutamate exchange and ammonia production in 10 anesthetized open-chest domestic swine (46.9 +/- 0.7 kg). Coronary blood flow was controlled through an extracorporal perfusion circuit. After a nonischemic control period (aerobic) the blood flow in the left anterior descending coronary artery was reduced by 60%. Arterial and anterior interventricular venous samples where drawn before and during 35 min of ischemia. Subendocardial blood flow, measured using radiolabeled microspheres, decreased from 1.27 +/- 0.16 to 0.25 +/- 0.09 (ml/g)/min, and left-ventricular wall-thickening fell to 47% of aerobic values. Ischemia resulted in a significant increase in the rate of glucose uptake (p less than 0.05) and a switch to net lactate production (p less than 0.01). Ischemia did not affect the rates of alanine output (-0.9 +/- 1.0 vs. -0.3 +/- 0.3 mumol/min) or glutamate uptake (-0.4 +/- 1.1 vs. 0.3 +/- 0.6 mumol/min), but did increase the venous-arterial difference for ammonia (-4.1 +/- 4.1 to 52.7 +/- 5.5 microM, p less than 0.0001) and the ammonia output (-0.33 +/- 0.24 to 1.34 +/- 0.14 mumol/min, p less than 0.0001). In conclusion, acute ischemia did not stimulate greater alanine output or glutamate uptake. However, acute ischemia did cause an increase in anaerobic glycolysis rate and ammonia output, which reflects a profound disruption in myocardial energy metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.