An electrochemical deposition technique was used to fabricate polypyrrole (Ppy)/NiO nanocomposite electrodes for supercapacitors. The nanocomposite electrodes were characterized and investigated by Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). The performance of supercapacitor electrodes of Ppy/NiO nanocomposite was enhanced compared with pristine Ppy electrode. It was found that the Ppy/NiO electrode electrodeposited at 4 A/cm−2 demonstrated the highest specific capacitance of 679 Fg−1 at 1 Ag−1 with an energy density of 94.4 Wh kg−1 and power density of 500.74 W kg−1. Capacitance retention of 83.9% of its initial capacitance after 1000 cycles at 1 Ag−1 was obtained. The high electrochemical performance of Ppy/NiO was due to the synergistic effect of NiO and Ppy, where a rich pores network-like structure made the electrolyte ions more easily accessible for Faradic reactions. This work provided a simple approach for preparing organic–inorganic composite materials as high-performance electrode materials for electrochemical supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.