We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new "defining" sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.
Aims. While analyzing decades of very long baseline interferometry (VLBI) data, we detected the secular aberration drift of the extragalatic radio source proper motions caused by the rotation of the Solar System barycenter around the Galactic center. Our results agree with the predicted estimate to be 4-6 micro arcseconds per year (μas/yr) towards α = 266 • and δ = −29 • . In addition, we tried to detect the quadrupole systematics of the velocity field. Methods. The analysis method consisted of three steps. First, we analyzed geodetic and astrometric VLBI data to produce radio source coordinate time series. Second, we fitted proper motions of 555 sources with long observational histories over the period 1990-2010 to their respective coordinate time series. Finally, we fitted vector spherical harmonic components of degrees 1 and 2 to the proper motion field. Results. Within the error bars, the magnitude and the direction of the dipole component agree with predictions. The dipole vector has an amplitude of 6.4 ± 1.5 μas/yr and is directed towards equatorial coordinates α = 263 • and δ = −20 • . The quadrupole component has not been detected. The primordial gravitational wave density, integrated over a range of frequencies less than 10 −9 Hz, has a limit of 0.0042 h −2 where h is the normalized Hubble constant is H 0 /(100 km s −1 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.