Abstract. In this paper we develop a calculation code to account for the effects carried by fast rotation on the observed spectra of early-type stars. Stars are assumed to be in rigid rotation, and the grid of plane-parallel model atmospheres used to represent the gravitational darkening are calculated by means of a non-LTE approach. Attention is paid to the relation between the apparent and parent non-rotating counterpart stellar fundamental parameters and apparent, and true Vsin i parameters as a function of the rotation rate Ω/Ω c , stellar mass, and inclination angle. It is shown that omitting of gravitational darkening in the analysis of chemical abundances of CNO elements can produce systematic overestimation or underestimation, depending on the lines used, rotational rate, and inclination angle. The proximity of Be stars to the critical rotation is revised while correcting not only the Vsin i of 130 Be stars, but also their effective temperature and gravity to account for stellar rotationally induced geometrical distortion and for the concomitant gravitational darkening effect. We concluded that the Vsin i increase is accompanied by an even higher value for the stellar equatorial critical velocity, so that the most probable average rate of the angular velocity of Be stars attains Ω/Ω c 0.88.
Aims. We search for the effects of metallicity on B and Be stars in the Small and Large Magellanic Clouds (SMC and LMC) and in the Milky Way (MW), by extending our previous analysis of B and Be star populations in the LMC to the SMC. The rotational velocities of massive stars and the evolutionary status of Be stars are examined with respect to their environments. Methods. Spectroscopic observations of hot stars belonging to the young cluster SMC-NGC 330 and its surrounding region were obtained with the VLT-GIRAFFE facilities in MEDUSA mode. We determined fundamental parameters for B and Be stars with the GIRFIT code, taking the effect of fast rotation and the age of observed clusters into account. We compared the mean V sin i obtained by spectral type-and mass-selection for field and cluster B and Be stars in the SMC with the one in the LMC and MW. Results. We find that (i) B and Be stars rotate faster in the SMC than in the LMC and in the LMC than in the MW; (ii) at a given metallicity, Be stars begin their main sequence life with a higher initial rotational velocity than B stars. Consequently, only a fraction of the B stars that reach the ZAMS with a sufficiently high initial rotational velocity can become Be stars; (iii) the distributions of initial rotational velocities at the ZAMS for Be stars in the SMC, LMC, and MW are mass-and metallicity-dependent; (iv) the angular velocities of B and Be stars are higher in the SMC than in the LMC and MW; (v) in the SMC and LMC, massive Be stars appear in the second part of the main sequence, in contrast to massive Be stars in the MW.
Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.