On August 17, 1999, a destructive earthquake occurred in the western part of the North Anatolian Fault Zone, Turkey. The earthquake source region has been designated as a seismic gap and an M7-class earthquake has been supposed to occur someday in the future so as to fill this seismic gap. So far we have undertaken various kinds of observations in this area and we could obtain some valuable data before, during and after the mainshock. Here we report some of the preliminary results of our recent studies, which include field work started in late July this year and continued during and after the earthquake occurrence just in the earthquake source region and its vicinity, in addition to seismic observations carried out for several years before the mainshock. Much emphasis is put on magnetotelluric field data acquired during the mainshock; in fact, large variations caused by seismic waves were recorded. Such variations could be interpreted in terms of electromagnetic induction in the conducting crust caused by the velocity field interacting with the static magnetic field of the Earth. In particular, the first motion of seismic wave could be identified in the records and used for precise determination of the hypocenter of the mainshock.
Horizontal and vertical intensity data, obtained between 1957.0 and 1961.0 at 69 observatories, are analysed to determine the worldwide distribution of the annual variation of the geomagnetic field. Only data observed near local midnight are used, to avoid the small, but significant contamination from Sq. Over most of the world the variation is found to be small, with a clear dependence on latitude, but near the poles it is larger and more erratic. The non-polar variation is subjected to spherical harmonic analysis and separated into parts of internal and external origin. The polar variations are shown to be consistent with a north-south oscillation of the mean position of the auroral electrojets during the year. It is suggested that, with the exception of the polar effect, the annual variation is not due to ionospheric currents (as was hitherto believed), but results from an annual variation in the latitude of the ring current. F i v 3. Harmonic constants of the annual variation plotted against dip latitude. The vertical bars indicate i 1 sd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.