In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.
Solid Immersion (SI) microscopy is a modern imaging modality that overcomes the Abbe diffraction limit and offers novel applications in various branches of visible, infrared, terahertz, and millimeter-wave optics. Despite the widespread use, SI microscopy usually results in qualitative imaging. Indeed, it presents only the raw distributions (in the image plane) of the backscattered field intensity, while unlocking the information about the physical properties of an imaged object, such as its complex refractive index (RI) distribution, requires resolving the inverse problem and remains a daunting task. In this paper, a method for resolving the SI microscopy inverse problem is developed, capable of reconstructing the RI distribution at the object imaging plane with subwavelength spatial resolution, while performing only intensity measurements. The sample RI is retrieved via minimization of the error function that characterizes discrepancy between the experimental data and the predictions of analytical model. This model incorporates all the key features of the electromagnetic-wave interaction with the SI lens and an imaged object, including contributions of the evanescent and ordinary-reflected waves, as well as effects of light polarization and wide beam aperture. The model is verified numerically, using the finite-element frequency-domain method, and experimentally, using the in-house reflection-mode continuous-wave terahertz SI microscope. Spatial distributions of the terahertz RIs of different low-absorbing optical materials and highly absorbing biological objects were studied and compared to a priori known data to demonstrate the potential of the novel SI microscopy modality. Given the linear nature of the Maxwell’s equations, the developed method can be applied for subwavelength-resolution SI microscopy at other spectral ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.