Contaminant loading associated with stormwater runoff from recently burned areas is poorly understood, despite the fact that it has the potential to affect downstream water quality. The goal of the present study is to assess regional patterns of runoff and contaminant loading from wildfires in urban fringe areas of southern California. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km(2) of natural open space between 2003 and 2009. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic aromatic hydrocarbons (PAHs). Results were compared to data from 16 unburned natural areas and six developed sites. Mean copper, lead, and zinc flux (kg/km(2)) were between 112- and 736-fold higher from burned catchments and total phosphorus was up to 921-fold higher compared to unburned natural areas. Polycyclic aromatic hydrocarbon flux was four times greater from burned areas than from adjacent urban areas. Ash fallout on nearby unburned watersheds also resulted in a threefold increase in metals and PAHs. Attenuation of elevated concentration and flux values appears to be driven mainly by rainfall magnitude. Contaminant loading from burned landscapes has the potential to be a substantial contribution to the total annual load to downstream areas in the first several years following fires.
The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre-and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (α = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m 3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m 3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.
Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire's impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire.
2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019-2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water-related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.