Pyrrolizidine alkaloids and their N-oxides can be extracted from the dried methanolic extracts of plant material using dilute aqueous acid. The subsequent integration of solid-phase extraction (with a strong cation exchanger) of the alkaloids and N-oxides from the aqueous acid solution, together with analysis using HPLC-ESI/MS, provides a method for the simultaneous profiling of the pyrrolizidine alkaloids and their N-oxides in plant samples and the collection of useful structural data as an aid in their identification. The N-oxide character of the analytes may be confirmed by treating analytical samples with a redox resin and observing the formation of the corresponding parent pyrrolizidine alkaloids. The present case study of Echium plantagineum highlighted a higher ratio of N-oxides to the parent tertiary bases than has been previously reported. Furthermore, a higher proportion of acetylated pyrrolizidine-N-oxides was observed in the flower heads relative to the leaves. Six pyrrolizidine alkaloids or pyrrolizidine-N-oxides, not previously reported from E. plantagineum, were tentatively identified on the basis of MS and biogenetic considerations. Three of these, 3'-O-acetylintermedine/lycopsamine, leptanthine-N-oxide and 9-O-angelylretronecine-N-oxide, have been reported elsewhere, whilst three others, 3'-O-acetylechiumine-N-oxide, echimiplatine-N-oxide and echiuplatine-N-oxide, appear unreported from any other source.
The 2-(3-methylenepiperidinyl)ethyl radical (6) displays considerable reluctance to ring-closure under conditions which its carbocyclic analog, the 2-(3-methylenecyclohexyl)ethyl radical (2), cyclizes essentially completely. Molecular mechanics calculations suggest that the increased activation barrier associated with ring-closure of 6 is the result of a higher than expected transition state energy. A study of the behavior of beta-ammonio-substituted 5-hexenyl radicals, such as the 3,3-dimethyl-3-azonia-5-hexenyl radical (22), reveals that cyclization occurs readily. Treatment of 1-methyl-1-(2-(phenylselenyl)ethyl)-3-methylenepiperidinium iodide (20) with tributyltin hydride in tert-amyl alcohol yields the bridgehead nitrogen bicyclic heterocycle, 1,5-dimethyl-1-azoniabicyclo[3.2.1]octane iodide (26), in excellent yield and without contamination, thus providing an attractive synthetic route to this hitherto unknown heterocyclic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.