'K2/SPICE' products are commonly laced with aminoalkylindole synthetic cannabinoids (i.e., JWH-018 and JWH-073) and are touted as ‘legal’ marijuana substitutes. Here we validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) methsod for measuring urinary concentrations of JWH-018, JWH-073, and several potential metabolites of each. The analytical procedure has high capacity for sample throughput and does not require solid phase or liquid extraction. Evaluation of human urine specimens collected after the subjects reportedly administered JWH-018 or a mixture of JWH-018 and JWH-073 provides preliminary evidence of clinical utility. Two subjects that consumed JWH-018 primarily excreted glucuronidated conjugates of 5-(3-(1-naphthoyl)-1H-indol-1-yl)-pentanoic acid (> 50 ng/ml) and (1-(5-hydroxypentyl)- 1H -indol-3-yl)(naphthalene-1-yl)-methanone (> 30 ng/ml). Interestingly, oxidized metabolites of both JWH-018 and JWH-073 were detected in these specimens, suggesting either metabolic demethylation of JWH-018 to JWH-073 or a non-reported, previous JWH-073 exposure. Metabolic profiles generated from a subject who consumed a mixture of JWH-018 and JWH-073 were similar to profiles generated from subjects who presumably consumed JWH-018 exclusively. Oxidized metabolites of JWH-018 and JWH-073 were of the same pattern, but JWH-018 metabolites were excreted at lower concentrations. These results begin clinically validating the LC-MS/MS assay for detecting and quantifying aminoalkylindole metabolites. Full validation awaits further testing.
The endocannabinoid anandamide is an arachidonic acid derivative that is found in most tissues where it acts as an important signaling mediator in neurological, immune, cardiovascular, and other functions. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to the physiologically active molecules hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), which play important roles in blood pressure regulation and inflammation. To determine whether anandamide can also be oxidized by P450s, its metabolism by human liver and kidney microsomes was investigated. The kidney microsomes metabolized anandamide to a single monooxygenated product, which was identified as 20-HETE-ethanolamide (EA). Human liver microsomal incubations with anandamide also produced 20-HETE-EA in addition to 5,6-, 8,9-, 11-12, and 14,15-EET-EA. The EET-EAs produced by the liver microsomal P450s were converted to their corresponding dihydroxy derivatives by microsomal epoxide hydrolase. P450 4F2 was identified as the isoform that is most probably responsible for the formation of 20-HETE-EA in both human kidney and human liver, with an apparent K m of 0.7 M. The apparent K m values of the human liver microsomes for the formation of the EET-EAs were between 4 and 5 M, and P450 3A4 was identified as the primary P450 in the liver responsible for epoxidation of anandamide. The in vivo formation and biological relevance of the P450-derived HETE and EET ethanolamides remains to be determined.
anti-(Trifluoromethyl) β-amino alcohols 2 have been prepared in good yields and with 90%
diastereoisomeric excess through a reaction of 1-(trifluoromethyl) epoxy ethers 3 with dimethylaluminum amide, followed by the in situ chelation-controlled stereoselective reduction of the
intermediate amino ketone. The salen-mediated chiral epoxidation of 1-(trifluoromethyl) enol ether
4a led to the homochiral epoxy ethers 11a and 12a in a good enantiomeric excess. Reaction with
dimethylaluminum amide followed by a reduction step provided the chiral amino alcohols 15a and
16a, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.