With the potential of quantum algorithms to solve intractable classical problems, quantum computing is rapidly evolving, and more algorithms are being developed and optimized. Expressing these quantum algorithms using a high-level language and making them executable on a quantum processor while abstracting away hardware details is a challenging task. First, a quantum programming language should provide an intuitive programming interface to describe those algorithms. Then a compiler has to transform the program into a quantum circuit, optimize it, and map it to the target quantum processor respecting the hardware constraints such as the supported quantum operations, the qubit connectivity, and the control electronics limitations. In this article, we propose a quantum programming framework named OpenQL, which includes a high-level quantum programming language and its associated quantum compiler. We present the programming interface of OpenQL, we describe the different layers of the compiler and how we can provide portability over different qubit technologies. Our experiments show that OpenQL allows the execution of the same high-level algorithm on two different qubit technologies, namely superconducting qubits and Si-Spin qubits. Besides the executable code, OpenQL also produces an intermediate quantum assembly code, which is technology independent and can be simulated using the QX simulator.
Unitary decomposition is a widely used method to map quantum algorithms to an arbitrary set of quantum gates. Efficient implementation of this decomposition allows for the translation of bigger unitary gates into elementary quantum operations, which is key to executing these algorithms on existing quantum computers. The decomposition can be used as an aggressive optimization method for the whole circuit, as well as to test part of an algorithm on a quantum accelerator. For the selection and implementation of the decomposition algorithm, perfect qubits are assumed. We base our decomposition technique on Quantum Shannon Decomposition, which generates O(344n) controlled-not gates for an n-qubit input gate. In addition, we implement optimizations to take advantage of the potential underlying structure in the input or intermediate matrices, as well as to minimize the execution time of the decomposition. Comparing our implementation to Qubiter and the UniversalQCompiler (UQC), we show that our implementation generates circuits that are much shorter than those of Qubiter and not much longer than the UQC. At the same time, it is also up to 10 times as fast as Qubiter and about 500 times as fast as the UQC.
This article presents the definition and implementation of a quantum computer architecture to enable creating a new computational device-a quantum computer as an accelerator. A key question addressed is what such a quantum computer is and how it relates to the classical processor that controls the entire execution process. In this article, we present explicitly the idea of a quantum accelerator that contains the full stack of the layers of an accelerator. Such a stack starts at the highest level describing the target application of the accelerator. The next layer abstracts the quantum logic outlining the algorithm that is to be executed on the quantum accelerator. In our case, the logic is expressed in the universal quantum-classical hybrid computation language developed in the group, called OpenQL, which visualized the quantum processor as a computational accelerator. The OpenQL compiler translates the program to a common assembly language, called cQASM, which can be executed on a quantum simulator. The cQASM represents the instruction set that can be executed by the microarchitecture implemented in the quantum accelerator. In a subsequent step, the compiler can convert the cQASM to generate the eQASM, which is executable on a particular experimental device incorporating the platform-specific parameters. This way, we are able to distinguish clearly the experimental research toward better qubits, and the industrial and societal applications that need to be developed and executed on a quantum device. The first case offers experimental physicists with a full-stack experimental platform using realistic qubits with decoherence and error-rates, whereas the second case offers perfect qubits to the quantum application developer, where there is neither decoherence nor error-rates. We conclude the article by explicitly presenting three examples of full-stack quantum accelerators, for an experimental superconducting processor, for quantum accelerated genome sequencing and for near-term generic optimization problems based on quantum heuristic approaches. The two later full-stack models are currently being actively researched in our group.INDEX TERMS Quantum computing, parallel architectures, parallel programming, quantum entanglement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.