We are developing a rugged and person-transportable Compton gamma imager for use in security investigations of radioactive materials, and for radiological incident remediation. The imager is composed of layers of scintillator with light collection for the forward layers provided by silicon photomultipliers and for the rear layer by photomultiplier tubes. As a first step, we have developed a 1/5 th -scale demonstration unit of the final imager. We present the imaging performance of this demonstration unit for 137 Cs at angles of up to 30 • off-axis. Results are also presented for 113 Sn and 22 Na. This represents the first demonstration of the use of silicon photomultipliers as an embedded component for light collection in a Compton gamma imager.
Abstract-A Compton gamma imager has been developed for use in consequence management operations and in security investigations. The imager uses solid inorganic scintillator, known for robust performance in field survey conditions. The design was constrained in overall size by the requirement that it be person transportable and operable from a variety of platforms. In order to introduce minimal dead material in the path of the incoming and scattered gamma rays, custom silicon photomultipliers (SiPMs), with a thin glass substrate, were used to collect the scintillation light from the scatter layers. To move them out of the path of the gamma rays, preamplification electronics for the silicon photomultipliers were located a distance from the imager. This imager, the Silicon photomultiplier Compton Telescope for Safety and Security (SCoTSS) is able to provide a one-degree image resolution in a ±45• field of view for a 10 mCi point source 40 m distant, within about one minute, for gamma-ray energies ranging from 344 keV to 1274 keV. Here, we present a comprehensive performance study of the SCoTSS imager.
a b s t r a c tA simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.