Whatever gender, aerobic training increases VO2max in children, mediated by an improvement in SVmax only. Similar mechanisms, including loading conditions and cardiac morphology, seem to be involved in both genders in order to explain such an improvement.
Stroke volume (SV) response to exercise depends on changes in cardiac filling, intrinsic myocardial contractility and left ventricular afterload. The aim of the present study was to identify whether these variables are influenced by endurance training in pre-pubertal children during a maximal cycle test. SV, cardiac output (Doppler echocardiography), left ventricular dimensions (time-movement echocardiography) as well as arterial pressure and systemic vascular resistances were assessed in 10 child cyclists (VO2max: 58.5 +/- 4.4 mL min-1 kg-1) and 13 untrained children (UTC) (VO2max: 45.9 +/- 6.7 mL min-1 kg-1). All variables were measured at the end of the resting period, during the final minute of each workload and during the last minute of the progressive maximal aerobic test. At rest and during exercise, stroke index was significantly higher in the child cyclists than in UTC. However, the SV patterns were strictly similar for both groups. Moreover, the patterns of diastolic and systolic left ventricular dimensions, and the pattern of systemic vascular resistance of the child cyclists mimicked those of the UTC. SV patterns, as well as their underlying mechanisms, were not altered by endurance training in children. This result implied that the higher maximal SV obtained in child cyclists depended on factors influencing resting SV, such as cardiac hypertrophy, augmented myocardium relaxation properties or expanded blood volume.
From these data, short-term Pred intake did seem to significantly improve performance during submaximal exercise, with concomitant alterations in hormonal and metabolic responses. Further studies will be necessary to elucidate the mechanisms of these hormonal and metabolic changes, and to determine whether the changes may be associated with the marked performance improvement obtained.
The aim of the present study was to analyse the effect of 1 year of intensive swimming training on lung volumes, airway resistance and on the flow-volume relationship in prepubertal girls. Five girls [9.3 (0.5) years old] performing vigorous swimming training for 12 h a week were compared with a control group of 11 girls [9.3 (0.5) years old] who participated in various sport activities for 2 h per week. Static lung volumes, maximal expiratory flows (MEF) at 75, 50 and 25% of vital capacity, 1-s forced expiratory volume (FEV1.0) and airway resistance (R(aw)) were measured by means of conventional body plethysmograph techniques. Prior to the training period there were no significant differences between the two groups for any of the parameters studied. Moreover, for both groups, all parameters were within the normal range for children of the corresponding age. After 1 year of training, vital capacity (VC), total lung capacity (TLC) and functional residual capacity (FRC) were larger (P < 0.05) in the girl swimmers than in the control group, while physical development in terms of height and weight was similar. FEV1.0 (P < 0.01), MEF25, MEF50 (P < 0.05) and MEF75 as well as the ratio MEF50/TLC (P < 0.05) had increased in the girl swimmers but were unchanged in the control group. R(aw) tended to be lower in the girl swimmers and higher in the control group. The results indicate that intensive swimming training prepuberty enhances static and dynamic lung volumes and improves the conductive properties of both the large and the small airways. As to the causative mechanism, it can be speculated that at prepuberty intensive swimming training promotes isotropic lung growth by harmonizing the development of the airways and of alveolar lung spaces.
To investigate the impact of acute salbutamol intake on performance and selected hormonal and metabolic variables during supramaximal exercise, 13 recreational male athletes performed two 30-second Wingate tests after either placebo (PLA, lactose) or salbutamol (SAL, 4 mg) oral administration, according to a double-blind and randomized protocol. Blood samples collected at rest, end of the Wingate test, recovery (5, 10, 15 min) were tested for growth hormone (GH), insulin (INS), blood glucose (GLU), and lactate determination. We found the peak and mean power performed significantly increased after SAL vs. PLA (PPSAL: 896 +/- 46; PPPLA: 819 +/- 57 W; MPSAL: 585 +/- 27; MPPLA: 534 +/- 35 W, p < 0.05), whereas no change was observed in the fatigue index. Blood glucose and INS were significantly increased by SAL at rest, at the end of the Wingate test, and during the 5 first minutes of recovery (p < 0.05). Plasma GH was significantly decreased by SAL (p < 0.05) during the recovery whereas end-exercise and recovery blood lactate tended but were not significantly increased after SAL vs. PLA. From these data, acute salbutamol intake at therapeutical dosage did appear to improve peak power and mean power during a supramaximal exercise, but the mechanisms involved need further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.