Vibration frequency and amplitude are major issues in the operation of atomic force microscopes (AFMs), since the slightest variation in amplitude and resonance frequency, changes application type of AFM quickly. Using finite element software does not apply any kind of simplifications on the geometric shape and it has less errors (compared to cases occurred in analytical calculations). In this paper, a novel simulation method based on finite element method software (ABAQUS) is developed for simulation of oscillatory and sensor behaviour of AFM of the piezoelectric microcantilever type in air and water, with different geometrical arrangements. Since the resonance frequency and amplitude are main parameters in the operation of the microscopes, the simulations will be based on these two parameters. The carried out modelling and simulation are done using the quality (Q) factor in air and, also simulation in fluid environment is done by real computational fluid dynamic and according to fluid-structure interaction. Transient and frequency response of the AFMs of single-layer and double-layer (parallel and series) piezoelectric are simulated in different conditions, and energy harvesting of this structures is compared to each other. Simulation results demonstrate the effectiveness of proposed method in reducing vibration and measurement precision in various environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.