Conversion of one terminally differentiated cell type into another (or transdifferentiation) usually requires the forced expression of key transcription factors. We examined the plasticity of human insulin-producing β-cells in a model of islet cell aggregate formation. Here, we show that primary human β-cells can undergo a conversion into glucagon-producing α-cells without introduction of any genetic modification. The process occurs within days as revealed by lentivirus-mediated β-cell lineage tracing. Converted cells are indistinguishable from native α-cells based on ultrastructural morphology and maintain their α-cell phenotype after transplantation in vivo. Transition of β-cells into α-cells occurs after β-cell degranulation and is characterized by the presence of β-cell–specific transcription factors Pdx1 and Nkx6.1 in glucagon+ cells. Finally, we show that lentivirus-mediated knockdown of Arx, a determinant of the α-cell lineage, inhibits the conversion. Our findings reveal an unknown plasticity of human adult endocrine cells that can be modulated. This endocrine cell plasticity could have implications for islet development, (patho)physiology, and regeneration.
In contrast to most tissues, epidermis and its derivatives appear to lack low density lipoprotein (LDL) receptors and exhibit sterologenesis rates unaffected by circulating lipoprotein (LP) cholesterol content. Since LDL receptors have been demonstrated in both cultured squamous cell carcinoma cells and human foreskin keratinocytes, when maintained in low-calcium media, LDL receptor expression may be related to keratinocyte differentiation. We compared receptor binding and internalization of LDL-gold in normal keratinocytes at different stages of growth at physiological calcium concentrations (early, 3-5 days; preconfluent, 6-10 days; postconfluent, 12-17 days), and correlated receptor expression with sterologenesis in LP-replete vs.-depleted media. Whereas in early cultures about 60% of sterologenesis was LP dependent, this fraction declined in preconfluent and confluent cultures despite continued culture growth and little decline in total sterologenesis. Accordingly, LDL receptors were most evident in early cultures, declining in preconfluent cultures in parallel with the decrease in LP-dependent sterol synthesis. In contrast, sterologenesis in human foreskin fibroblasts was profoundly influenced by exogenous LP at all stages of confluence; total and LP-dependent sterologenesis declined in parallel with growth cessation. These studies represent the first demonstration that normal keratinocytes express functional LDL receptors at physiologic calcium concentrations. Moreover, they demonstrate that LDL receptor expression in keratinocytes, in contrast to fibroblasts, can only in part be attributed to growth requirements. Instead, loss of LDL receptor expression serves as a distinctive marker of keratinocyte differentiation and may reflect the specific functional requirements of the epidermis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.