Mycoplasma species have a global distribution causing serious diseases in cattle worldwide including mastitis, arthritis, pneumonia, otitis media and reproductive disorders. Mycoplasma species are typically highly contagious, are capable of causing severe disease, and are difficult infections to resolve requiring rapid and accurate diagnosis to prevent and control disease outbreaks. This review discusses the development and use of different diagnostic methods to identify Mycoplasma species relevant to cattle, with a particular focus on Mycoplasma bovis. Traditionally, the identification and diagnosis of mycoplasma has been performed via microbial culture. More recently, the use of polymerase chain reaction to detect Mycoplasma species from various bovine samples has increased. Polymerase chain reaction has a higher efficiency, specificity, and sensitivity for laboratory diagnosis when compared with conventional culture‐based methods. Several tools are now available for typing Mycoplasma spp. isolates, allowing for genetic characterization in disease outbreak investigations. Serological diagnosis through the use of indirect ELISA allows the detection of antimycoplasma antibodies in sera and milk, with their use demonstrated on individual animal samples as well as BTM samples. While each testing method has strengths and limitations, their combined use provides complementary information, which when interpreted in conjunction with clinical signs and herd history, facilitates pathogen detection, and characterization of the disease status of cattle populations.
Mycoplasma spp. are a major cause of mastitis, arthritis and pneumonia in cattle, and have been associated with reproductive disorders in cows. While culture is the traditional method of identification the use of PCR has become more common. Several investigators have developed PCR protocols to detect M. bovis in milk, yet few studies have evaluated other sample types or other important Mycoplasma species. Therefore the objective of this study was to develop a multiplex PCR assay to detect M. bovis, M. californicum and M. bovigenitalium, and evaluate its analytical performance against traditional culture of bovine milk, semen and swab samples. The PCR specificity was determined and the limit of detection evaluated in spiked milk, semen and swabs. The PCR was then compared to culture on 474 field samples from individual milk, bulk tank milk (BTM), semen and swab (vaginal, preputial, nose and eye) samples. Specificity analysis produced appropriate amplification for all M. bovis, M. californicum and M. bovigenitalium isolates. Amplification was not seen for any of the other Mollicutes or eubacterial isolates. The limit of detection of the PCR was best in milk, followed by semen and swabs. When all three Mycoplasma species were present in a sample, the limit of detection increased. When comparing culture and PCR, overall there was no significant difference in the proportion of culture and PCR positive samples. Culture could detect significantly more positive swab samples. No significant differences were identified for semen, individual milk or BTM samples. PCR identified five samples with two species present. Culture followed by 16S-23S rRNA sequencing did not enable identification of more than one species. Therefore, the superior method for identification of M. bovis, M. californicum and M. bovigenitalium may be dependent on the sample type being analysed, and whether the identification of multiple target species is required.
In Australia, one of the biosecurity recommendations to help prevent the introduction of Mycoplasma bovis into a dairy herd is to use a PCR assay on bulk tank milk (BTM) samples to evaluate the M. bovis infection status of potential source herds. An alternative approach is to assess the immunological status of the herd with respect to previous exposure to M. bovis via the use of an ELISA that is commercially available for use on cattle milk and serum. The objectives of this study were to (1) evaluate factors potentially associated with variation in the ELISA BTM optical density coefficient (ODC%) in previously exposed herds, (2) evaluate the association between the proportion of cows that are ELISA positive and the BTM ELISA ODC%, (3) assess agreement between the BTM ELISA and PCR and culture, and (4) compare BTM ELISA ODC% between the "hospital" herd and the main lactating herd on the same farm. Bulk tank milk samples (n = 192) were collected from 19 dairy herds with a history of clinical M. bovis disease and from 6 control herds (herds with no known clinical cases of mycoplasmosis). For 28 of the BTM samples collected, blood was also collected from 50 lactating cows contributing to that bulk tank sample. From 1 herd, concurrent paired BTM samples were collected from the main herd and the hospital herd on 16 occasions. All BTM samples were analyzed by ELISA (Bio-X Bio K 302, Bio-X Diagnostics, Rochefort, Belgium), PCR, and culture. The BTM ELISA ODC% was associated with time since initial M. bovis outbreak and time since the start of the herd's calving period. Following an initial outbreak of M. bovis, the BTM ELISA ODC% was highest in the first 8 mo. In split- and seasonal-calving herds, significantly higher BTM ELISA ODC% results were observed 5 to 8 wk after the commencement of the calving period. A significant association was observed between the within-herd seroprevalence for the lactating herd and BTM ELISA ODC%, but within-herd seroprevalence explained little of the variation in BTM ELISA ODC%. When comparing the BTM ELISA with a multiplex probe PCR and culture followed by 16S to 23S rRNA sequencing, there was virtually no agreement above that expected by chance; prevalence-adjusted bias-adjusted kappa values were 0.22 and 0.25 for ELISA category versus PCR category and culture, respectively. Finally, the hospital herd BTM ELISA ODC% mirrored that for the main herd BTM but was significantly higher. This study demonstrates that this commercially available ELISA used on BTM samples may complement the use of BTM PCR or culture in identifying herds from which purchase of animals may pose a higher biosecurity risk for introduction of M. bovis into noninfected herds.
Mycoplasma bovis can have significant consequences when introduced into immunologically naïve dairy herds. Subclinically infected carrier animals are the most common way that M. bovis is introduced into herds. Although M. bovis udder infections can be detected by milk sampling lactating animals before their introduction, currently, no definitive way of identifying M. bovis carrier animals that are nonlactating (i.e., calves, heifers, dry cows, or bulls) is available. Understanding the prevalence of M. bovis shedding from various body sites in clinically infected animals could inform strategies for the detection of subclinical infection in nonlactating stock. The mucosal surfaces of the nose, eye, and vagina of 16 cows with recent clinical mastitis caused by M. bovis were examined for the presence of M. bovis shedding. Blood was collected for serological evaluation by a commercially available ELISA. Mycoplasma bovis was isolated from the vagina of only 3 (18.8%) of the cows and was not detected from the noses or eyes of any of the cows. Fifteen of the 16 (93.8%) cows were seropositive to the ELISA. With such low prevalence of detection of M. bovis from the vagina and no detections from the noses or eyes of recently clinically infected animals, it is very likely that sampling these sites would be ineffective for detecting subclinical infection in cattle. Serology using the ELISA may have some use when screening animals for biosecurity risk assessment. However, more information regarding time to seroconversion, antibody longevity, and test diagnostic sensitivity and specificity are required to define the appropriate use of this ELISA for biosecurity purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.