In this research the cell membrane stability (CMS), relative water content (RWC) and effect of different water interval on Cymbopogon citratus (lemon grass) was assessed. The cell membrane stability and relative water content of the plant shows the physiological activity of the plant. The plant sample was subjected to three different watering regimes viz: one, two- and three-days intervals with a control sample irrigated daily for a period of twelve months. Uniform stalk of lemon grass plants were planted into a depth of 7.5 cm composted soil, each treatment was made in triplicate. The evaluated growth parameters where height of the plant, number of leaves and tillers, which were taken weekly for period of twelve months (year). The height shows a significant difference from first to twelfth month after planting. The height of the plant increases simultaneous with the age of the plant. First month after planting show significant difference in height of sample watered daily and treated samples. The results shows that the RWC (07.14%) and CMS (52.58%) was low in samples under water stress respectively when compared to well-watered samples (55.41%). No significant difference was observed between samples under one, two and three days interval. The number of leaves differs significantly in the first MAP except in the samples watered daily and three days interval. Maximum number of leaves was achieved at twelfth MAP under one day interval (137.33) followed by samples watered daily (126) and two days interval, while three days interval has the least number of leaves (leaf number). The number of tillers shows significant differences between the means at fifth and sixth MAP, (fifth MAP = 73.33 and sixth MAP = 126) and the treatments under one day intervals (fifth MAP = 18.33 and sixth MAP = 35.67). In the research, samples watered daily and under one day intervals shows high productivity when compared to the remaining treatment.
Grasses can serve as an alternative biomass for the production of bioenergy which plays a vital role in solving some of the challenges faced in the production of renewable energy and also help in tackling some of the environmental challenges faced all over the world. In this research, the phytochemical and biofuel content of Cymbopogon citratus was assessed. The phytochemical screening and proximate analysis were carried out according to standard qualitative and quantitative methods. Alkaloids, balsam, flavonoids, glycosides, saponin, carbohydrates, protein, volatile oil, minerals are analyzed. Bioenergy was produced using enzymatic hydrolysis after pretreatment under different pH viz: pH 5, pH 7 and pH 8 all under an ambient temperature of 36˚C. Each of the pretreated samples of varying pH was then fermented using Saccharomyces cerevisiae. Each of the pre-treatment under three different pH was made in triplicate. The absorbance was determined for reducing sugar and at the end of the production, the pretreated samples were subjected to Gas chromatography and mass spectroscopy to analyze the end product of bioenergy produced. The result for phytochemicals shows the presence of flavonoids and alkaloids (1.60%) followed by volatile oil (7%), saponin (3.20%) and tannins (0.6%). The result for proximate analysis shows that lemon grass has the highest percentage of carbohydrates (87.63%). This was followed by ash (11.67%), protein (11.14%) and fibres (2.83%). However, the mineral analysis shows the presence of Calcium (1.88 mg/ml), Magnesium (0.13 mg/ml), Phosphorous (5.87 mg/ml), Potassium (2866.67 mg/ml) and Sodium (89.17 mg/ml). The absorbance in C. citratus is higher at pH 5 (0.0651). The GC-MS analysis of the bioenergy produced shows the presence of Ethyl alcohol (bioethanol) in all the samples at different pH. Hydrazine carboxamide was present in all the treatments under different pH. In addition glycidol, acetyldehyde, acetic acid, 1,2-propanediamine were found present, having fuel potential and are good source of gasoline. These are produced as a result of fermentation and enzymatic activities of the organic compound present in the biomass sample used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.