Abstract. We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
We study a family of type II multiple orthogonal polynomials. We consider orthogonality conditions with respect to a vector measure, in which each component is a q-analogue of the binomial distribution. The lowering and raising operators as well as the Rodrigues formula for these polynomials are obtained. The difference equation of order r + 1 is studied. The connection via limit relation between four types of Kravchuk polynomials is discussed.
We consider two families of type II multiple orthogonal polynomials. Each family has orthogonality conditions with respect to a discrete vector measure. The r components of each vector measure are q-analogues of Meixner measures of the first and second kind, respectively. These polynomials have lowering and raising operators, which lead to the Rodrigues formula, difference equation of order r+1, and explicit expressions for the coefficients of recurrence relation of order r+1. Some limit relations are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.