SummaryWeed control research to date has mainly focused on arable land, especially regarding herbicides, but also regarding non-chemical methods. Some of these experiences can be applied to hard surface areas. However, weeds on hard surface areas cause problems that are different from those on arable land. Additionally, crop tolerance does not need to be considered when choosing an appropriate weed control method on these areas. The aim of this review is to describe current knowledge of weeds and weed control methods on hard surface areas and reveal potential ways of advancement. One of the shortcomings of non-chemical weed control on hard surfaces thus far, is a lack of proper definition of efficiency of the weed control methods. To obtain effective control, more frequently repeated treatments are required than chemical weed management, thereby increasing the costs of labour and fuel. One way to reduce costs can be by adjusting the level of control to the required visual street quality. Weeds are adapted to the hard surface environment and may be less susceptible to certain control methods. This review indicates that for efficient weed control on hard surfaces there is a need for combining weed control techniques, applying sensors for detecting weeds, adapting the energy dose to type of weed flora and prevention of weeds by improved construction of new surfaces.
Summary An analysis of the regulations of herbicide use for weed control in non‐agricultural/urban amenity areas, including actual pesticide use, was carried out as a joint survey of seven European countries: Denmark, Finland, Germany, Latvia, the Netherlands, Sweden and United Kingdom. Herbicides constitute the major part of the pesticides used in urban amenity areas. Herbicide use on hard surfaces is the largest in terms of volume and potential contamination of surface and groundwater. The aim of the study was to investigate the differences in political interest and public debate on the ‘use of pesticides in public urban amenity areas’, regulations within each country at national, regional and local levels, possible use of alternative weed control methods and the amounts of pesticides used on urban amenity areas. A comparative analysis revealed major differences in political interest, regulations and availability of statistics on pesticide use. Denmark, Sweden, the Netherlands and Germany have, or have had, a strong public and political interest for reducing the use of herbicides to control weeds in urban amenity areas and also have very strict regulations. The UK is currently undergoing a period of increasing awareness and strengthening regulation, while Latvia and Finland do not have specific regulations for weed control in urban amenity areas or on hard surfaces. Statistics on pesticide/herbicide use on urban amenity areas were only available in Denmark and the Netherlands. Developing this kind of information base reveals the differences in herbicide use, regulations and policies in European countries and may enhance the transfer of knowledge on sustainable weed control across countries.
Summary The efficacy of five non‐chemical weed control methods for reducing weed cover on traffic islands was investigated in the growing season of 2004. Three trial sites were divided into six treatment areas which were treated with either flame, steam, hot air, hot water, brushes or left untreated. The treatments were carried out at regular intervals throughout the growing season. The percentage weed cover was measured every second week using a 75 × 75 cm quadratic frame with 100 squares. In the control areas, a rapid increase in weed cover was observed, whereas all treatments reduced weed cover. Hot water was the most effective method, although not significantly better than hot air or steam. Hot air treatment was more effective than brushing, whereas hot water was more effective than both flaming and brushing. The doses that were used were relatively high (150–355 kg ha−1), partly because of the irregular shape of the traffic islands and the treatment intervals were quite short in comparison with those in similar studies. However, the treatments could keep down the weeds only to a certain extent. The present knowledge of the efficacy of various weed control methods, as well as an increase in our knowledge of adequate treatment intervals, supports an optimisation of hard‐surface weed control. Data and experience gained from these trials were used to develop further calibrated application studies.
Summary The regrowth of Calystegia sepium was studied in three types of experiments during spring 2003 and spring 2004. In one glasshouse experiment, rhizome fragments were planted in pots and either harvested at six different developmental stages to assess their undisturbed development and growth or harvested at 420 day degrees after burial to measure their regenerative capacity. Regrowth gradually declined as the plants had more expanded leaves at the time of burial. Minimum regenerative capacity was found when plants had four to eight fully expanded leaves and this coincided with the growth stage of minimum dry weight of underground regenerative organs. The effects of burial depth and rhizome fragment length were studied in outdoor container experiments. Burial at 15 or 25 cm reduced above‐ and below‐ground biomass in 2004, while 25 cm deep burial was necessary to reduce regrowth in 2003. Fragmentation had generally little effect on production of above‐ and below‐ground biomass, whereas burial and fragmentation delayed emergence time. Sensitivity of rhizomes to drying was studied in a growth chamber. Drying periods of 12 or 24 h did not have an influence on the production of aerial shoots, whereas 48 or 96 h reduced production of above‐ground biomass significantly. The experiments indicated that the minimum regenerative capacity would be at about 5–6 leaf stage and that mechanical disturbance at this stage would optimise weed control.
An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after the second flaming treatments that were implemented at different time intervals. Flaming treatments decreased plant biomass of both species and also the ratio of flowering annual bluegrass plants. However, few plants were killed. The first flaming treatment affected aboveground biomass more than the second flaming treatment. A treatment interval of 7 d provided the greatest reduction in regrowth of perennial ryegrass, whereas the effect of treatment interval varied between the first and second repetitions of this experiment for annual bluegrass. In general, short treatment intervals (3 d) should be avoided, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.