Hyperbolic metamaterials (HMM) based on multilayered metal/dielectric films or ordered arrays of metal nanorods in a dielectric matrix are extremely attractive optical materials for manipulating over the parameters of the light flow. One of the most promising tools for tuning the optical properties of metamaterials in situ is the application of an external magnetic field. However, for the case of HMM based on the ordered arrays of magneto-plasmonic nanostructures, this effect has not been clearly demonstrated until now. In this paper, we present the results of synthesis of HMM based on the highly-ordered arrays of bisegmented Au/Ni nanorods in porous anodic alumina templates and a detailed study of their optical and magneto-optical properties. Distinct enhancement of the magneto-optical (MO) effects along with their sign reversal is observed in the spectral vicinity of epsilon-near-zero and epsilon-near-pole spectral regions. The underlying mechanism is the amplification of the MO polarization plane rotation initiated by Ni segments followed by the light propagation in a strongly birefringent HMM. This stays in agreement with the phenomenological description and relevant numerical calculations.
Compact planar photonic elements serving for efficient control over the polarization of light are of paramount importance in photonics. Here, we propose a design of a chiral periodic metasurface based on plasmonic nanodisks and nanorods arranged asymmetrically in a unit cell. Using the finite-difference time-domain analysis, we show that the collective lattice resonance harnessed by the diffraction coupling of the plasmonic unit cells is the heart of the revealed resonant 38% circular dichroism effect. The circular dichroism enhancement of the considered structure is improved using the deep-learning-assisted optimization of the metasurface design.
Resonant optical properties of the magnetoplasmonic crystals, which support propagation of surface plasmon polaritons (SPPs) accompanied by magnetooptical effects, have found success in magnetic field driven control of optical radiation. In this work we investigate the resonant magnetooptical effects in the second harmonic generation in the magnetoplasmonic crystal formed by gold/pemalloy bifilm covering dielectric grating. Strong transverse magnetooptical Kerr with the contrast up to 30% is revealed in the spectral vicinity of the SPP excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.