The utilization of transgenic plants expressing recombinant antigens to be used in the formulation of experimental immunogens has been recently communicated. We report here the development of transgenic plants of alfalfa expressing the structural protein VP1 of foot and mouth disease virus (FMDV). The presence of the transgenes in the plants was confirmed by PCR and their specific transcription was demonstrated by RT-PCR. Mice parenterally immunized using leaf extracts or receiving in their diet freshly harvested leaves from the transgenic plants developed a virus-specific immune response. Animals immunized by either method elicited a specific antibody response to a synthetic peptide representing amino acid residues 135-160 of VP1, to the structural protein VP1, and to intact FMDV particles. Additionally, the immunized mice were protected against experimental challenge with the virus. We believe this is the first report demonstrating the induction of a protective systemic antibody response in animals fed transgenic plants expressing a viral antigen. These results support the feasibility of producing edible vaccines in transgenic forage plants, such as alfalfa, commonly used in the diet of domestic animals even for those antigens for which a systemic immune response is required.
Foot-and-mouth disease virus (FMDV) is a cytopathic virus that experimentally infects mice, inducing a thymus-independent neutralizing Ab response that rapidly clears the virus. In contrast, vaccination with UV-inactivated virus induces a typical thymus-dependent (TD) response. In this study we show that dendritic cells (DCs) are susceptible to infection with FMDV in vitro, although viral replication is abortive. Infected DCs down-regulate the expression of MHC class II and CD40 molecules and up-regulate the expression of CD11b. In addition, infected DCs exhibit morphological and functional changes toward a macrophage-like phenotype. FMDV-infected DCs fail to stimulate T cell proliferation in vitro and to boost an Ab response in vivo. Moreover, infection of DCs in vitro induces the secretion of IFN-γ and the suppressive cytokine IL-10 in cocultures of DCs and splenocytes. High quantities of these cytokines are also detected in the spleens of FMDV-infected mice, but not in the spleens of vaccinated mice. The peak secretion of IFN-γ and IL-10 is concurrent with the suppression of Con A-mediated proliferation of T cells obtained from the spleens of infected mice. Furthermore, the secretion of these cytokines correlates with the suppression of the response to OVA, a typical TD Ag. Thus, infection of DCs with FMDV induces suppression of TD responses without affecting the induction of a protective thymus-independent response. Later, T cell responses are restored, setting the stage for the development of a long-lasting protective immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.