Seawater properties in two intense rings in the South Atlantic are considered. One ring separated from the Brazil Current and the other from the Malvinas Current. The analysis is based on the CTD casts and SADCP measurements from the onboard velocity profiler. The optical properties, chemical parameters, methane concentration, and biological properties such as primary production, plankton, and fish were also analyzed. Analysis of strong differences between the eddies is supplemented by observations of whales and birds in the region.
The carbon dioxide concentration in the atmosphere has progressively risen since pre-industrial times. About one-third of the anthropogenically generated CO2 is absorbed by the waters of the World Ocean, whereas the waters of the Southern Ocean take up about 40% of this CO2. The concentrations of oxygen and carbon dioxide dissolved in seawater are sensitive to climate changes, transferring anthropogenic pressures with consequences for the biogeochemical cycles in the World Ocean. The Southern Ocean is a key region for the exchange of oxygen and carbon between the surface water and the atmosphere and for their transfer with cold water masses to the deep layers of the Ocean. In this paper, we discuss the dynamics of the carbon dioxide partial pressure (pCO2) and dissolved oxygen (O2) in the surface waters of the Atlantic Southern Ocean based on data collected during the 87th cruise of the R/V “Academik Mstislav Keldysh”. The study area includes the Bransfield Strait, Antarctic Sound, the Powell Basin, the Weddell, and Scotia Seas. We have analyzed the spatial distribution of pCO2 and oxygen for the areas of transformation of water masses and changes in biogeochemical processes. In the zone of Scotia and Weddell Seas, we have observed an increase in pCO2 and a decrease in oxygen concentrations at the transect from the Weddell Sea at 56° W to the Powell Basin. From the Antarctic Sound to the Bransfield Strait, a decrease in oxygen saturation and an increase in pCO2 has been traced. The surface waters of the Bransfield Strait have revealed the greatest variability of hydrochemical characteristics due to a complex structure of currents and intrusions of different water masses. In general, this area has been characterized by the maximum pCO2, while the surface waters are undersaturated with oxygen. The variability of the AOU/ΔpCO2 (w-a) ratio has revealed a pCO2 oversaturation and an O2 undersaturation in the waters of the Bransfield Strait. It is evidence of active organic carbon decomposition as the major controlling process. Yet, photosynthesis is the major biogeochemical process in the studied areas of the Weddell and Scotia seas, and their waters have been undersaturated with pCO2 and oversaturated with O2. As it comes from the analysis of the distribution and correlation coefficients of AOU and the sea-air gradient of pCO2 with other physical and biogeochemical properties, the predominance of the biotic processes to the dynamics of O2 and pCO2 in the surface water layer has been demonstrated for the studied areas. Yet, there is evidence of additional sources of CO2 not associated with the production and destruction processes of organic matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.