Aims: To study the antifungal activity of methyl cis-7-oxo-deisopropyldehydroabietate (MCOD) against phytopathogenic fungi, Botrytis cinerea and Lophodermium seditiousm. The effect of the compound was studied by transmission electron microscopy (TEM) and the composition of sterols on both treated and untreated cultures was determined. Methods and Results: MCOD was tested at concentrations in the range 0AE003-0AE5% by the agar plate dilution method. The radial growth of the colonies treated with MCOD was measured against colonies from untreated cultures. The radial growth of colonies of both fungi and the spore germination of B. cinerea were partially or completely inhibited. Fragments of active growing colonies treated and untreated with MCOD were submitted to the conventional procedure for ultrastructural observation by TEM. Observations by TEM on colonies of B. cinerea and L. seditiosum under 0AE1% MCOD revealed several autophagic-like vacuoles, morphological alterations on lomasome and lipid accumulations in the apical zone of hyphae of both fungi. Observations on spore germination of B. cinerea revealed the presence of strongly stained lipid accumulations retained by vacuoles at the cell periphery of young hyphae. The sterol composition of B. cinerea and L. seditiosum was determined on MCOD treated and untreated cultures by gas-chromatography ⁄ mass-spectrometry (GC-MS) with molecular ions and fragmentation patterns characteristics of ergosterol (M + 396) and dihydroergosterol (M + 398) in both fungi. Conclusions: The morphological alterations are consistent with an unspecific mode of action of MCOD causing inhibition of normal growth or damaging the fungi cells. TEM observations suggest a mechanism of resistance based on the retention of MCOD by the lipid accumulation. Significance and Impact of the Study: The results obtained in the present work afforded a better understanding of the mode of action of a resin acid derivative on phytopathogenic fungi. The inhibition growth of both fungi by MCOD demonstrates the antifungal activity of this compound and the interest on further in vivo studies, in order to evaluate its potential as a benign alternative to conventional fungicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.